
Page 1 of 48

James D Bloom

SUN CERTIFIED PROGRAMMER FOR JAVA 2 ...3
Source Files ...3
Imports ...3
Java Programming Language Keywords ...3
Literals and Ranges of All Primitive Data Types ..3
Array Declaration, Construction, and Initialization ..4
Using a Variable or Array Element that is Uninitialized and Unassigned6
Class Access Modifiers..6
Class Modifiers (non-access)...6
Member Access Modifiers...6
Local Variables ..7
Other Modifiers – Members ..7
Static variables and methods ...9
Declaration Rules...9
Properties of main() ..10
java.lang.Runnable ..10
Interface Implementation...10
Java Operators ...11
String Objects and References ...11
Comparison Operators ...12
Equality Operator...12
Arithmetic Operators ...12
String Concatenation Operator ..12
Increment / Decrement Operators..12
Shift Operators ...13
Bitwise Operators ..13
Ternary (Conditional Operator)...13
Casting ...13
Logical Operators ..14
Passing Variables into Methods...14
Writing Code using if and switch Statements..14
Writing Code Using Loops ..16
Using break and continue ..16
Catching an Exception Using try and catch ..16
Working with the Assertion Mechanism...17
Encapsulation...18
Overriding and Overloading ..19
Instantiation and Constructors ...20
Return Types..21
Inner Classes ..21
Method-Local Inner Classes ..22
Anonymous Inner Classes ...22
Static Nested Classes ...23
Overriding hashCode() and equals() ...23
Collections ...24
Garbage Collection..25
Creating, Instantiating, and Starting New Threads..26
Transition Between Thread States ...27
Sleep, Yield and Join ...27
Concurrent Access Problems and synchronized Threads ..28

Page 2 of 48

James D Bloom

Communicating with Objects by Waiting and Notifying ..29
Deadlocked Threads ..29

APPENDIX A: KEYWORDS ...30
Access Modifiers ...30
Class, Method, and Variable Modifiers ...30
Flow Control..30
Error Handling ...31
Package Control...31
Primitives ...31
Variable Keywords ..32
Void Return Type Keyword ..32
Unused Reserved Words..32

APPENDIX B: QUICK SUMMARY ...33
Primitive Variables’ Size ...33
Primitive Integer Variables’ Range ...33
Member Visibility..33
Class Visibility...33
3 Types of Array Declaration ..33
2 Main Array Exceptions ...33
Class Definitions..33
Character Formats..34
Number Formats ..34
Two’s Compliment ..34
Shifts ..34
Division by Zero ..35
Bitwise Non-Lazy Boolean Operators ...35
Loops and if statements ...35
Labelled break / continue statements ..35
Exceptions ..36
Asserts..36
Classes ...36
Class Modifiers ..37
Anonymous inner classes ..37
java.lang.Object ...37
Collections ...37
Garbage Collection..38
Reference Classes ..38
Threads ..38
Thread Life Cycle ..40
Important Methods in the String class ...41
The StringBuffer class ...41
java.lang.Math class..41
Common Wrapper Conversion Methods ...42
Practice Question Notes...43
Java Operators, order of precedence - from highest to lowest ..46

References..48

Page 3 of 48

James D Bloom

SUN CERTIFIED PROGRAMMER FOR JAVA 2

This is a complete set of notes containing every thing you need to know for the SUN
CERTIFIED PROGRAMMER FOR JAVA 2 EXAMS 310-035 & 310-027

Source Files

• If a source code file does not contain a public class or interface it can take on a name that

is different from its classes and interfaces.

• A source code file cannot contain more than one public class or interface.

Imports

• The java.lang package is always imported by default and does not need to be imported by

an import statement.

Java Programming Language Keywords

• Keywords cannot be used as identifiers (names) for classes, methods, variables, or

anything else in your code.

• All keywords start with a lowercase letter.

Literals and Ranges of All Primitive Data Types

• All six number types in Java are signed, so they can be positive or negative.

• Use the formula -2(bits-1) to 2(bits-1)-1 to determine the range of an integer type.

• A char is really a 16-bit unsigned integer (Unicode character).

• Literals are source code representations of primitive data types, or a String.

• Integers can be represented in octal (0127), decimal (1245), and hexadecimal (0XCAFE

or 0xCAFE).

• Suffixes:

o double d or D (64-bit signed floating-point number)

o long l or L (64-bit signed integer)

o float f or F (32-bit signed floating-point number)

• Floating-point numbers are assumed to be double if no suffix is specified.

• Legal formats:

digits . optionalDigits optionalExponent suffix

. digits optionalExponent suffix

Page 4 of 48

James D Bloom

digits optionalExponent suffix

• The optional exponent part consists of an e or E followed by a signed integer.

• If a floating-point literal does not contain a decimal point then it needs to have either the

exponent part or the suffix to be recognised as a floating-point literal as opposed to an

integer literal.

• Character escape codes

o \b – backspace

o \t – tab

o \n – line-feed

o \f – form-feed

o \r – carriage return

o \” – double quote

o \’ – single quote

o \\ – backslash

• The backslash can also be followed by an 8-bit octal value \000 through \377 or by u or U

followed by a four-digit hexadecimal value \u0000 (or \U0000) through \uffff (or

\UFFFF). The four digit hexadecimal value can be used to specify the full range of

Unicode characters.

• A class literal is formed by appending .class to the name of a primitive or reference type.

It evaluates to the class descriptor of the reference type or class descriptor of the

primitive type’s wrapper class.

• Default values:

o boolean false

o byte 0

o char \u0000

o short 0

o int 0

o long 0l

o float 0.0f

o double 0.0

Array Declaration, Construction, and Initialization

• Arrays can hold primitives or objects, but the array itself is always an object.

• When you declare an array, the brackets can be to the left or right of the variable name.

Page 5 of 48

James D Bloom

• It is never legal to include the size of an array in the declaration.

• You must include the size of an array when you construct it using new unless you are

creating an anonymous array. i.e:

String[] weeks = new String[52];

String[] days = new String[] {"Su", "Mo", "Tu", "We", "Th", "Fr", "Sa"};

• You can also create and initialize arrays without the new keyword although this can only

be done in an array declaration i.e:

String[] days = {"Su", "Mo", "Tu", "We", "Th", "Fr", "Sa"};

• Elements in an array of objects are not automatically created, although primitive array

elements are given default values.

• You’ll get a NullPointerException if you try to use an array element in an object array, if

that element does not refer to a real object.

• Arrays are indexed beginning with zero. In an array with three elements, you can access

element 0, element 1, and element 2.

• You’ll get an ArrayIndexOutOfBoundsException if you try to access outside the range of

an array.

• Arrays have a length variable that contains the number of elements in the array.

• The last index you can access is always one less that the length of the array.

• Multidimensional arrays are just arrays of arrays.

• The dimensions in a multidimensional array can have different lengths.

• An array of primitives can accept any value that can be promoted implicitly to the

declared type of the array. For example, a byte or short can be placed in an int array.

• An array of objects can hold any objects that passes the IS-A (or instanceof) test for the

declared type of the array. For example, if Horse extends Animal then a Horse object can

go into an Animal array.

• You can assign an array of one type to a previously declared array reference of its

supertypes. For example, a Honda array can be assigned to an array declared as type Car

(assuming Honda extends Car).

Page 6 of 48

James D Bloom

Using a Variable or Array Element that is Uninitialized and Unassigned

• When an array of objects in instantiated, objects within the array are not instantiated

automatically, but all the references get the default value of null.

• When an array of primitives is instantiated, all elements get their default values.

• Just as with array elements, instance variables are always initialized with a default value.

• Local / automatic / method variables are never given a default value. If you attempt to

use one before initializing it you’ll get a compiler error.

Class Access Modifiers

• There are three access modifiers: public, protected and private.

• There are four access levels: public, protected, default and private

• Classes can have only public or default access

• Class visibility revolves around whether code in one class can:

o Create an instance of another class

o Extend (or subclass), another class

o Access methods and variables of another class

• A class with default access can be seen only by all classes within the same package.

• A class with public access can be seen by all classes from all packages.

Class Modifiers (non-access)

• Classes can also be modified with final, abstract or strictfp.

• A class that is abstract cannot also be final.

• A method that is abstract cannot also be final or private.

• A final class cannot be subclassed.

• An abstract class cannot be instantiated.

• A single abstract method in a class means the whole class must abstract and must be

declared as so.

• An abstract class can have both abstract and non-abstract methods.

• The first concrete class to extend an abstract class must implement all abstract methods.

Member Access Modifiers

• Methods and instance (nonlocal) variables are known as “members”.

• Members can use all four levels: public, protected, default and private.

Page 7 of 48

James D Bloom

• Member access comes in two forms:

o Code in one class can access a member of another class.

o A subclass can inherit a member of its superclass.

• If a class cannot be accessed, its members cannot be accessed.

• Determine class visibility before determining member visibility.

• public members can be accessed by all other classes, even in different packages.

• If a superclass member is public, the subclass inherits it – regardless of package.

• this. Always refers to the currently executing object.

• private members can be accessed only by code in the same class

• private members are not visible to subclasses, so private members cannot be inherited,

and therefore cannot be abstract.

• Default and protected members differ only in when subclasses are involved:

o Default members can be accessed only by other classes in the same package.

o protected members can be accessed by other classes in the same package, plus

subclasses regardless of the package.

• protected = package + subclasses

• Default = package only

• A protected member inherited by a subclass from another package is not accessible to

any other class in the subclass package, except for the its own subclasses.

Local Variables

• Local (method, automatic, stack) variable declarations cannot have access modifiers.

• final is the only modifier available to local variable.

• Local variables don’t get default values, so they must be initialized before use.

Other Modifiers – Members

• final methods cannot be overridden in a subclass

• abstract methods must be declared, with a signature and return type, but are not

implemented.

• abstract methods end in a semicolon – no curly braces.

• Three ways to spot a nonabstract method:

o The method is not marked abstract

o The method has curly braces

Page 8 of 48

James D Bloom

o The method has code between the curly braces

• The first nonabstract (concrete) class to extend an abstract class must implement all of

the abstract class’ abstract methods.

• abstract methods must be implemented by a subclass, so they must be inheritable. For

that reason:

o abstract methods cannot be private.

o abstract methods cannot be final.

o abstract methods cannot be synchronized.

o abstract methods cannot be native.

o abstract methods cannot be strictfp.

• abstract class’ can be strictfp.

• The strictfp modifier is used in front of a method or class to indicate that floating-point

numbers will strictly follow the Java Specification for floating point calculation (i.e. only

64-bit) and no more accurate. strictfp therefore provides repeatability for different

platforms.

• The synchronized modifier applies only to methods.

• synchronized methods can have any access control and can be marked final.

• synchronized methods cannot be abstract.

• The native modifier applies only to methods.

• The strictfp modifier applies only to classes and methods.

• Instance variables can

o Have any access control

o Be marked final or transient

• Instance variables cannot be declared abstract, synchronized, native or strictfp.

• It is legal to declare a local variable with the same name as an instance variable; this is

called “shadowing”

• final variables have the following properties

o final variables cannot be reinitialized once assigned a value.

o final reference variables cannot refer to a different object once the object has been

assigned to the final variable.

o final reference variables must be initialized before the constructor completes.

• There is no such thing as a final object. An object reference marked final does not mean

the object itself is immutable.

Page 9 of 48

James D Bloom

• The transient modifier applies only to instance variables.

• The volatile modifier applies only to instance variables.

• The transient modifier prevents field from being serialized, as transient fields are always

skipped when objects are serialized.

• The volatile modifier is used on variables that may be modified simultaneously by other

threads. This warns the compiler to fetch them fresh each time, rather than caching them

in registers. This also inhibits certain optimisations that assume no other Thread will

change the values unexpectedly. Since other threads cannot see local variables, there is

never any need to mark local variables volatile.

Static variables and methods

• They are not tied to any particular instance of a class

• An instance of a class does not need to exist in order to use static members of the class.

• There is only one copy of a static variable per class and all instances share it.

• static variables get the same default values as instance variables.

• A static method (such as main()) cannot access a nonstatic (instance) variable s.

• static members are accessed using the class name as follows

ClassName.theStaticMethod().

• static members can also be accessed using an instance reference variable,

someObj.theStaticMethod() but that’s just a syntax trick. The complier uses the class

type of the reference variable to determine which static method to invoke.

• static methods cannot be overridden, although they can be redeclared / redefined by a

subclass. So although static methods can sometimes appear to be overridden,

polymorphism will not apply.

Declaration Rules

• A source code file can have only one public class.

• If the source file contains a public class, the file name should match the public class

name.

• A file can have more than one non-public class.

• Files with no public classes have no naming restrictions.

• In a file, classes can be listed in any order (there is no forward referencing problem).

• import statements only provide a typing shortcut to a class’ fully qualified name.

Page 10 of 48

James D Bloom

• import statements cause no performance hits and do not increase the size of your code.

• imports ending in .*; are importing all classes within a package.

• imports ending in ; are importing a single class.

• You must use fully qualified names when you have different classes from different

packages, with the same class name; an import statement will not be explicit enough.

Properties of main()

• It must be marked static.

• It must have a void return type.

• It must have a single String[] argument.

• For the purposes of the exam assume that the main() method must be public.

• Improper main() method declaration (or the lack of a main() method) cause a runtime

error not a compiler error.

• In the declaration of main(), the order of the keywords public and static can be switched.

java.lang.Runnable

• The java.lang.Runnable interface has a single method

public void run();

Interface Implementation

• Interfaces are contracts for what a class can do, but they say nothing about the way in

which the class must do it.

• Interfaces can be implemented by any class, from an inheritance tree.

• An interface is like a 100-percent abstract class, and is implicitly abstract whether you

type the abstract modifier in the declaration or not, although an interface doesn’t have a

constructor (or get constructed) and an abstract class does.

• An interface can only have abstract methods, no concrete methods are allowed.

• Interfaces are by default public and abstract – explicit declaration of these modifiers is

optional.

• Interfaces can also be declared strictfp.

• Interfaces can have constants, which are always implicitly public, static and final.

• interface constants cannot be transient.

• interface methods cannot be native, strictfp or synchronized.

Page 11 of 48

James D Bloom

• interface constant declarations of public, static and final are optional in any combination.

• A legal nonabstract implementing class has the following properties:

o It provides concrete implementations for all methods from the interface.

o It must follow all legal override rules for the methods it implements.

o It must not declare any new checked exceptions for an implementation method.

o It must not declare any checked exceptions that are broader than the exceptions

declared in the interface method, but does not have to declare the exceptions of

the interface.

o It may declare runtime exceptions on any interface method implementation

regardless of the interface declaration.

o It must maintain the exact signature and return type of the methods it implements

(but does not have to declare the exceptions of the interface).

• A class implementing an interface can itself be abstract.

• An abstract implementing class does not have to implement the interface methods (but

the first concrete subclass must).

• A class can extend only one class (no multiple inheritance), but it can implement many

interfaces.

• Interfaces can extend one or more other interfaces.

• Interfaces cannot extend a class, or implement a class or interface.

• When taking the exam, verify that interface and class declarations are legal before

verifying other code logic.

Java Operators

• An unassigned reference variable’s bits represent null.

• There are 12 assignment operators: =, *=, /=, %=, +=, -=, <<=, >>=, >>>=, &=, ^=, |=

• Numeric expressions always result in at least an int-sized result never smaller.

• Floating-point numbers are implicitly doubles (64-bits)

• Narrowing a primitive truncates the high-order bits.

• To convert to or from Two’s Complement: flip all the bits, then add 1

• Compound assignments (e.g. +=) perform an automatic cast.

String Objects and References

• String objects are immutable, and cannot be changed

Page 12 of 48

James D Bloom

• When you use a String reference variable to modify a String:

o A new String is created (the old String is immutable)

o The reference variable is set to the new String.

Comparison Operators

• Comparison operators always result in a boolean value (true or false)

• There are four comparison operators: >, >=, <, <=

• When comparing characters, Java uses the ASCII or Unicode value of the number as the

numerical value.

Equality Operator

• Four types of things can be tested: numbers, characters, booleans, reference variables.

• There are two equality operators: == and !=

Arithmetic Operators

• There are four primary operators: add, subtract, multiply, and divide

• The remainder operator returns the remainder of a division.

• When floating-point numbers are divided by zero, they return positive or negative

infinity, except when the dividend is also zero, in which case you get NaN.

• When the remainder operator performs a floating-point divide by zero, it will not cause a

runtime exception.

• When integers are divided by zero, a runtime ArithmeticException is thrown.

• When the remainder operator performs an integer divide by zero, a runtime

ArithmeticException is thrown.

String Concatenation Operator

• If either operand is a String, the + operator concatenates the operands.

• If both operands are numeric, the + operator adds the operands.

Increment / Decrement Operators

• Prefix operator runs before the value is used in the expression.

• Postfix operator runs after the value is used in the expression.

• In any expression, both operands are fully evaluated before the expression is applied.

• final variable cannot be incremented or decremented.

Page 13 of 48

James D Bloom

Shift Operators

• There are three shift operators: >>, <<, >>>; the first two are signed the last is unsigned.

• Shift operators can only be used on integer types.

• Shift operators can work on all bases of integers (octal, decimal or hexadecimal)

• Except for the unusual cases of shifting an int by a multiple of 32 or a long by a multiple

of 64 (these shifts result in no change to the original values), bits are filled as follows:

o << fills the right bits with zeros

o >> fills the left bits with whatever value the original sign bits (leftmost bit) held.

o >>> fills the left bits with zeros (negative numbers will become positive)

• All bit shift operands are promoted to at least an int.

• For int shifts > 32 or long shifts > 64, the actual shift value is the remainder of the right

operand divided by 32 or 64 respectively.

Bitwise Operators

• There are three bitwise operators &, ^, | and a bitwise complement operator ~.

• The & operator sets a bit to 1 if both operand’s bits are set to 1 and is therefore a bitwise

AND operator.

• The ^ operator sets a bit to 1 if exactly one operand’s bit is set to 1 and therefore is a

bitwise XOR operator.

• The | operator sets a bit to 1 if at least one operand’s bit is set to 1 and therefore is a

bitwise OR operator.

• The ~ operator reverses the value of every bit in the single operand.

Ternary (Conditional Operator)

• someVariable = (boolean expression) ? value to assign if true : value to assign if false

• Returns one of two values based on whether a boolean expression is true of false.

• The value after the ? is the “if true return”

• The value after the : is the “if false return”

Casting

• Implicit casting (you write no code) happens when a widening conversion occurs.

• Explicit casting (you write the cast) is required when a narrowing conversion is desired.

Page 14 of 48

James D Bloom

• Casting a floating point to an integer type causes all digits to the right of the decimal

point to be lost (truncated).

• Narrowing conversion can cause loss of data – the most significant bits (leftmost) can be

lost.

Logical Operators

• There are five logical operators: ^, &, |, &&, ||

• Logical operators work with two expressions that must resolve to boolean values.

• The && and & (AND) operators return true only if both operands are true.

• The | and || (OR) operators return true if either (or both) operands are true.

• The ^ (XOR) operator return true if either (but not both) operands are true.

• The && and || operators are known as short-circuit operators.

• The && operator does not evaluate the right operand if the left operand is false.

• The || operator does not evaluate the right operand if the left operand is true.

• The &, | and ^ operators always evaluate both operands.

Passing Variables into Methods

• Methods can take primitive and / or object references as arguments.

• Method arguments are always copies of either primitive variables or reference variables.

• Method arguments are never actual objects (they can be references to objects).

• In practice, a primitive argument is a completely detached copy of the original primitive.

• In practice, a reference argument is another copy of a reference to the original object.

Writing Code using if and switch Statements

• The only legal argument to an if statement is a boolean, so the if test can be only on an

expression that resolves to a boolean or a boolean variable.

• Watch out for boolean assignments (=) that can be mistaken for boolean equality (==)

tests.

• Curly braces are optional for if statement that have only one statement, but watch out for

misleading indentation.

• switch statements can be evaluate only the byte, short, int and char data types, i.e. only

integers 32-bits or less.

Page 15 of 48

James D Bloom

• When switching on a variable smaller than an int all the case arguments must be able to

be cast to the smaller variable type without affecting their value.

byte g = 2; // max byte value is 127

switch (g) {

 case 23:

 …

 break;

 case 128:

 …

 break; // compiler error:

// possible loss of precision

// found: int

// required: byte

}

• The while condition of a do-while requires a semicolon at the end.

do {

 …

} while (…) ;

• The case argument must be a literal or final variable. You cannot have a case that

includes a non-final variable, or a range of values.

• If the condition in a switch statement matches a case value, execution will run through all

code in the switch following the matching case statement until a break or the end of the

switch statement is encountered. In other words, the matching case is just the entry point

into the case block, but unless there’s a break statement, the matching case is not the

only case code that runs.

• The default keyword should be used in a switch statement if you want to execute some

code when none of the case values match the conditional value.

• The default block can be located anywhere in the switch block so if no case matches, the

default block will be entered, and if the default does not contain a break, then code will

continue to execute (fall- through) to the end of the switch or until the break statement is

encountered.

Page 16 of 48

James D Bloom

Writing Code Using Loops

• A for statement does not require any arguments in the declarations, but has three parts:

declaration and / or initialization, boolean evaluation, and the iteration expression.

• If a variable is incremented or evaluated within a for loop, it must be declared before the

loop, or within the for loop declaration.

• A variable declared (not just initialized) within the for loop declaration cannot be

accessed outside the for loop.

• Both the initialize and iteration expressions can have more than one statement each

separated by a comma, all variables initialized this way must be the same type.

• The conditional expression can not have more than one statement.

• The do-while loop will enter the body of the loop at least once, even if the test condition

is not met.

Using break and continue

• An unlabeled break statement will cause the current iteration of the innermost looping

construct to stop and the next line of code following the loop to be continued.

• An unlabeled continue statement will cause the current iteration of the innermost loop to

stop, and the condition of that loop to be checked, and if the condition is met, perform the

loop again.

• If the break statement or the continue statement is labelled, is will cause similar action to

occur on the labelled loop, not the innermost loop, i.e.

outer:

 while(true) {

 do {

 System.out.println(“Hello”);

 break outer;

 } while (false) ;

}

• If a continue statement is used in a for loop, the iteration statement is executed, and the

condition is checked again.

Catching an Exception Using try and catch

• Exceptions come in two flavours: checked and unchecked

Page 17 of 48

James D Bloom

• Checked exceptions include all subtypes of Exception, excluding classes that extend

RuntimeException.

• Checked exceptions are subject to the handle or declare rule; any method that might

throw a checked exception (including methods that invoke methods that can throw a

checked exception) must either declare the exception using the throws keyword, or

handle the exception with an appropriate try - catch.

• Subtypes of Error or RuntimeException are unchecked, so the compiler doesn’t enforce

the handle or declare rule. You’re free to handle them, and your free to declare them, but

the compiler doesn’t care one way or the other.

• If you use an optional finally block, it will always be invoked, regardless of whether an

exception in the corresponding try is thrown or not, and regardless of whether a thrown

exception is caught or not.

• The only exception to the finally-will-always-be-called rule is that a finally will not be

invoked if the JVM shuts down. That could happen if code from the try or catch blocks

calls System.exit(int), in which case the JVM will not start your finally block.

• Just because finally is invoked does not mean it will complete. Code in the finally block

could itself raise an exception or issue a System.exit(int).

• Uncaught exceptions propagate back through the call stack, starting from the method

where the exception is thrown and ending with either the first method that has a

corresponding catch for that exception type or a JVM shutdown (which happens if the

exception gets to main(), and main() is “ducking” the exception by declaring it).

• You can create your own exceptions, normally by extending Exception or one of its

subtypes. Your exception will then be considered a checked exception, and the compiler

will enforce the handle-or-declare rule for that exception.

• All catch blocks must be ordered from most specific to most general. For example, if

you have a catch clause for IOException and Exception, you must put the catch for

IOException first. Otherwise, the IOException would be caught by catch(Exception e),

because a catch argument can catch the specified exception or any of its subtypes. The

compiler will stop you from defining catch clauses that can never be reached (because it

sees that the more specific exception will be caught first by the more general catch).

Working with the Assertion Mechanism

• Assertions give you a way to test your assumptions during development and debugging.

Page 18 of 48

James D Bloom

• Assertions are typically enabled during testing but disabled during deployment.

• assert statements have the following syntax:

assert (<boolean expression>);

or

assert (<boolean expression>) : “<string message>” ;

• You can use assert as a keyword or an identifier, but not both together. To compile code

that uses assert as an identifier (for example, a method name), use the –source 1.3

command-line flag to javac. To compile code that uses assert as a keyword use the –

source 1.4 flag to javac.

• Assertions are disabled at runtime (and compile-time) by default. To enable them, use a

command-line flag –ea or –enableassertions.

• You can selectively disable assertions using the –da or –disableassertions flag.

• If you enable or disable assertions using the flag without any arguments, you’re enabling

or disabling assertions in general. You can combine enabling and disabling switches to

have assertions enabled for some classes and or packages, but not others.

• You can enable or disable assertions in the system classes with the –esa or –dsa flags.

• You can enable and disable assertions on a class-by-class basis, using the following

syntax:

java -ea -da:MyClass TestClass

• You can enable and disable assertions on a package basis, and any package you specify

also includes any subpackages (packages further down the directory hierarchy)

java -ea -da:mypackage.subpackage TestClass

• Do not use assert expressions to validate arguments to public methods.

• Do not use assert expressions that cause side effects. Assertions aren’t guaranteed to

always run, so you don’t want behaviour that changes depending on whether assertions

are enabled.

• Do use assertions to validate that a particular code block will never be reached, by using:

assert false; this will throw an assertion error immediately if the assert statement is

executed.

Encapsulation

• The goal of encapsulation is to hide an implementation behind an interface (or API).

• Encapsulated code has two features:

Page 19 of 48

James D Bloom

o Instance variables are kept protected (usually with the private modifier)

o Getter and setter methods provide access to instance variables

• IS-A refers to inheritance

• IS-A is expressed with the keyword extends

• HAS-A means an instance of one class “has a” reference to an instance of another class.

Overriding and Overloading

• Instance methods can be overridden or overloaded; constructors and static methods can

be overloaded but not overridden.

• abstract methods must be overridden by the first concrete (nonabstract) subclass.

• With respect to the method it overrides, the overriding method

o Must have the same argument list

o Must have the same return type

o Must not have a more restrictive access modifier

o May have a less restrictive access modifier

o Must not throw new or broader checked exceptions

o May throw fewer or narrower checked exceptions, or any unchecked exception

• final methods cannot be overridden, and therefore cannot be abstract.

• Only inherited methods may be overridden.

• A subclass uses super.overriddenMethodName() to call the superclass version of an

overridden method.

• Overloading means using the same method name, but with different arguments.

• Overloaded methods

o Must have different argument lists

o May have different return types, as long as the argument lists are also different

o May have different access modifiers

o May throw different exceptions

• Methods from a superclass can be overloaded in a subclass.

• Polymorphism applies to overriding, not to overloading.

• Object type (of the calling instance) determines which overridden method is used at

runtime.

• Reference type (of the method parameters) determines which overloaded method will be

used at compile time.

Page 20 of 48

James D Bloom

Instantiation and Constructors

• Objects are constructed:

o You cannot create a new object without invoking a constructor

o Each superclass in an object’s inheritance tree will have one of its constructors

called

• Every class, even abstract classes, has at least one constructor.

• Constructors must have the same name as the class.

• Constructors do not have a return type. If there is a return, then it is simply a method

with the same name as the class, and not a constructor.

• Constructors execution occurs as follows:

o The constructor calls its superclass constructor, which call its superclass

constructor, and so on all the way up to the Object constructor.

o The Object constructor executes and then returns to the calling constructor, which

runs to completion and then returns to its calling constructor, and so on back

down to the constructor of the actual instance being created.

• Constructors can use any access modifiers (even private).

• The compiler will create a default constructor if you don’t create any constructors in your

class.

• The default constructor is a public no-argument constructor with a no-argument call to

super().

• The first statement of every constructor must be a call to either this() (an overloaded

constructor) or super().

• The compiler will add a call to super() if you do not, unless you have already put in a

call to this().

• Instance methods and variables are only accessible after the super() constructor runs.

• abstract classes have constructors that are called when a concrete subclass is instantiated.

• Interfaces do not have constructors.

• If your superclass does not have a no-argument constructor, you must create a constructor

and insert a call to super() with arguments matching those of the superclass constructor.

• Constructors are never inherited, thus they cannot be overridden.

• A constructor can be directly invoked only by another constructor, using a call to super()

or this().

• Issues with calls to this():

Page 21 of 48

James D Bloom

o May appear only as first statement in a constructor

o The argument list determines which overloaded constructor is called.

o Constructors can call constructors can call constructors, and so on, but sooner or

later one of them better call super() or the stack will explode.

o this() and super() cannot be in the same constructor. You can have one or the

other but never both.

Return Types

• Overloaded methods can change return types; overridden methods cannot.

• Object reference return types can accept null as a return value.

• An array is a legal return type, both to declare and return as a value.

• For methods with primitive return type, any value that can be implicitly converted to the

return type can be returned.

• Nothing can be returned from a void method, but you can return nothing, by using the

return keyword on its own.

• For methods with an object reference return type, a subclass of that type can be returned.

• For methods with an interface return type, any implementer of that interface (or a

subinterface) can be returned.

Inner Classes

• A “regular” inner class is declared inside the curly braces of another class, but outside

any method or other code block.

• An inner class is a full- fledged member of the enclosing (outer) class, so it can be

marked with an access modifier as well as the strictfp, abstract or final modifiers, but of

course never abstract and final together.

• An inner class instance shares a special relationship with an instance of the enclosing

class. This relationship gives the inner class access to all of the outer class’ members,

including those marked private.

• To instantiate an inner class, you must have a reference to an instance of the outer class.

• From code within the enclosing class, you can instantiate the inner class using only the

name of the inner class, as follows:

MyInner mi = new MyInner();

Page 22 of 48

James D Bloom

• From code outside the enclosing class’ instance methods, you can instantiate the inner

class only by using both the inner and outer class names, and a reference to the outer

class as follows:

MyOuter mo = new MyOuter();

MyOuter.MyInner inner = mo.new MyInner();

• From code within the inner class, the keyword this holds a reference to the inner class

instance. To reference the outer-this (in other words, the instance of the outer class that

this inner instance is tied to) precede the keyword this with the outer class name as

follows:

MyOuter.this;

Method-Local Inner Classes

• A method-local inner class is defined within a method of the enclosing class.

• For the inner class to be used, you must instantiate it, and that instantiation must happen

within the same method, but after the class definition code.

• A method-local inner class cannot use variables declared within the method (including

parameters) unless those variable are marked final.

• The only modifiers you can apply to a method- local inner class are strictfp, abstract and

final (Never both final and abstract at the same time).

Anonymous Inner Classes

• Anonymous inner classes have no name, and their type must be either a subclass of the

named type or an implementer of the named interface.

• An anonymous inner class can be recognized because it has an pair of braces containing

the class definition before the semicolon. An anonymous inner class is always created as

part of a statement, so don’t forget to close the statement after the class definition, with a

curly brace and semicolon.

Runnable r = new Runnable() {

 public run() { ... }

} ;

• Because of polymorphism, the only method you can call on an anonymous inner class

reference are those defined in the reference variable class (or interface).

• An anonymous inner class can extend one class, or implement one interface. Unlike non-

anonymous classes (inner or otherwise), an anonymous inner class cannot do both. In

Page 23 of 48

James D Bloom

other words, it cannot both extend a class and implement an interface, nor can it

implement more than one interface.

• An argument- local inner class is declared, defined, and automatically instantiated as part

of a method invocation. The key to remember is that the class is being defined within a

method argument, so the syntax will end the class definition with a curly brace, followed

by a closing parenthesis to end the method call, followed by a semicolon to end the

statement: });

Static Nested Classes

• Static nested classes are inner classes marked with the static modifier.

• Technically, a static nested class is not an inner class, but instead considered a top- level

nested class.

• Because the nested class is static, it does not share any special relationship with an

instance of the outer class. In fact, you don’t need an instance of the outer class to

instantiate a static nested class.

• Instantiating a static nested class requires using both the outer and nested class names as

follows:

MyOuter.StaticInner sn = new MyOuter.StaticInner();

• A static inner class cannot access nonstatic members of the outer class, since it does not

have an implicit reference to any outer instance (in other words, the nested class instance

does not get an outer-this reference.

Overriding hashCode() and equals()

• The critical methods in class Object are equals(), finalize(), hashCode(), and toString().

• equals(), hashCode(), and toString() are public and finalize() is protected.

• Fun facts about toString()

o Override toString() so that System.out.println() or other methods can see

something useful.

o Override toString() to return the essence of your object’s state.

• Use == to determine if two reference variables refer to the same object.

• Use equals() to determine if two objects are meaningfully equivalent.

• If you don’t override equals(), your objects won’t be useful hashtable / hashmap keys.

• If you don’t override equals(), two different objects can’t be considered the same.

Page 24 of 48

James D Bloom

• Strings and wrappers override equals() and make good hashtable / hashmap keys.

• When overriding equals(), use the instanceof operator to be sure you’re evaluating an

appropriate class.

• When overriding equals(), compare the object’s significant attributes.

• Highlights of the equals() contract:

o Reflexive: x.equals(x) is true

o Symmetric: If x.equals(y) is true, then y.equals(x) must be true

o Transitive: If x.equals(y) is true, and y.equals(z) is true, then x.equals(z) is true

o Consistent: Multiple calls to x.equals(y) will return the same result

o Null: If x is not null then x.equals(null) is false

• If x.equals(y) is true, then x.hashCode() == y.hashCode() must be true.

• If you override equals(), override hashCode(); it is also good to implement the

serializable interface as HashMap and Hashtable are both themselves serializable.

• Classes HashMap, Hashtable, LinkedHashMap, and LinkedHashSet use hashing.

• A legal hashCode() override compiles and runs.

• An appropriate hashCode() override sticks to the contract.

• An efficient hashCode() override distributes keys randomly across a wide range of

buckets.

• To reiterate: if two objects are equal, their hashcodes must be equal.

• It’s legal for a hashCode() method to return the same value for all instances, although in

practice it’s very inefficient.

• Highlights of the hashCode() contract:

o Consistent: Multiple calls to x.hashCode() return the same integer.

o If x.equals(y) is true, then x.hashCode() == y.hashCode() must be true.

o If x.equals(y) is false, then x.hashCode() == y.hashCode() can be eithe r true or

false, but false will tend to create better efficiency.

• transient variables aren’t appropriate for equals() and hashCode().

Collections

• Common collection activities include adding objects, removing objects, verifying object

inclusion, retrieving objects, and iterating.

• Three meanings for “collection”:

o collection – Respresents the data structure in which objects are stored.

Page 25 of 48

James D Bloom

o Collection – java.util.Collection is the interface from which Set and List extend.

o Collections – A class that holds static collection utility methods

• Three basic flavours of collection include List, Set and Map:

o List – Ordered, duplicates allowed, with an index

o Set – May or may not be ordered and / or sorted, duplicates not allowed

o Map – May or may not be ordered and / or sorted, uses a key, duplicate keys are

not allowed

• Four basic subflavours of collections included Sorted, Unsorted, Ordered, and

Unordered.

• Ordered means iterating through a collection in a specific, non-random order.

• Sorted means iterating through a collection in a natural sorted order.

• Natural means alphabetic, numeric, or programmer-defined, which ever applies.

• Key attributes of common collection classes:

o ArrayList – Fast iteration and fast random access

o Vector – Like a somewhat slower ArrayList, mainly due to its synchronized

methods

o LinkedList – Good for adding and removing elements from the ends (i.e. stacks

and queues) and the middle

o HashSet – Assures no duplicates, provides no ordering

o LinkedHashSet – No duplicates, iterates by insertion order or last accessed

o TreeSet – No duplicates, iterates in natural sorted order

o HashMap – Fastest updates (key/value pairs), allows one null key , many null

values

o Hashtable – Like a slower HashMap (as with Vector, due to its synchronized

methods). No null values or null key allowed.

o LinkedHashMap – Faster iterations, iterates by insertion order or last accessed,

allows one null key, many null values.

o TreeMap – A sorted map, in natural order

Garbage Collection

• In Java, garbage collection provides some automated memory management.

• All objects in Java live on the heap.

• The heap is also known as the garbage collectable heap.

Page 26 of 48

James D Bloom

• The purpose of garbage collecting is to find and delete the objects that can’t be reached

• Only the JVM decides exactly when to run the garbage collector.

• You (the programmer) can only recommend when to run the garbage collector.

• You can’t know the G.C. algorithm; maybe it uses mark and sweep, maybe it’s

generational and / or iterative.

• Objects must be considered eligible before they can be garbage collected.

• An object is eligible when no live thread can reach it.

• To reach an object, a live thread must have a live reachable reference variable to that

object.

• Java applications can run out of memory.

• Islands of objects can be garbage collected, even through they have references,

• To reiterate: garbage collection can’t be forced.

• Request garbage collection with System.gc();

• class Object has a finalize() method.

• The finalize() method is guaranteed to run once and only once before the garbage

collector deletes an object.

• Since the garbage collector makes no guarantees, finalize() may never run.

• You can uneligibilize an object from within finalize().

• It is not normally considered a good ides to override the finalize() method as it may

never run.

Creating, Instantiating, and Starting New Threads

• Threads can be created by extending Thread and overriding the public void run ()

method.

• Thread objects can also be created by calling the Thread constructor that takes a

Runnable argument. The Runnable object is said to be the target of the thread.

• You can call start() on a Thread object only once. If start() is called more than once on

a Thread object, it will throw a RuntimeExpection.

• The isAlive() method return true if start() has been called and the Thread has not yet

died.

• It is legal to create many Thread objects using the same Runnable object as the target.

Page 27 of 48

James D Bloom

• When a Thread object is created, it does not become a thread of execution until its start()

method is invoked. When a Thread object exists but hasn’t been started, it is in the new

state and is not considered alive.

Transition Between Thread States

• Once a new thread is started, it will always enter the runnable state.

• The thread scheduler can move a thread back and forth between the runnable state and

the running state.

• Only one thread can be running at a time, although many threads may be in runnable

state.

• There is no guarantee that the order in which threads were started determines the order in

which they’ll run.

• There’ no guarantee that threads take turns in any fair way. It’s up to the thread

scheduler, as determined by the particular virtual machine implementation. If you want a

guarantee that your threads will take turns regardless of the underlying JVM, you should

use the sleep() method. This prevents one thread from hogging the running process

while another thread starves.

• A running Thread may enter a blocked / waiting state by a wait(), sleep(), or join()

call.

• A running Thread may enter a blocked / waiting state because it can’t acquire the lock

for a synchronized block of code.

• When the sleep or wait is over, or an object’s lock becomes available, the Thread can

only reenter the runnable state.

• A dead Thread cannot be started again.

Sleep, Yield and Join

• Sleeping is used to delay execution for a period of time, and no locks are released when a

Thread goes to sleep.

• A sleeping thread is guaranteed to sleep for at least the time specified in the argument to

the sleep method (unless it’s interrupted), but there is no guarantee as to when the newly

awakened Thread will actually return to running.

• The sleep() method is a static method that sleeps the currently executing thread. One

Thread cannot tell another Thread to sleep.

Page 28 of 48

James D Bloom

• The setPriority() method is used on Thread objects to give threads a priority of between

1 (low) and 10 (high), although priorities are not guaranteed, and not all JVMs use a

priority range of 1-10.

• If not explicitly set, a thread’s priority will be the same priority as the thread that created

it (in other words, the Thread executing the code that creates the new Thread)

• The yield() method may cause a running thread to back out if there are runnable threads

of the same priority. There is no guarantee that this will happen, and there is no

guarantee that when the Thread backs out there will be a different Thread selected to run.

A Thread might yield() and then immediately reenter the running state.

• The closest thing to a guarantee is that at any given time, when a Thread is running it will

usually not have a lower priority than any Thread in the runnable state. If a low-priority

Thread is running when a high-priority Thread enters runnable, the JVM will usually pre-

empt the running low-priority Thread and put the high-priority Thread in.

• When one Thread calls the join() method of another Thread, the currently running

Thread will wait until the Thread it joins with has completed. Think of the join()

method as saying “Hey thread, I want to join on to the end of you. Let me know when

you’re done, so I can enter the runnable state.”

Concurrent Access Problems and synchronized Threads

• synchronized methods prevent more than one thread from accessing an object’s critical

method code.

• You can use the synchronized keyword as a method modifier, or to start a synchronized

block of code.

synchronized (obj) {

…

}

• To synchronize a block of code (in other words, a scope smaller than the whole method),

you must specify an argument that is the object whose lock you want to synchronize on.

• While only one thread can be accessing synchronized code of a particular instance,

multiple threads can still access the same object’s unsynchronized code.

• When an object goes to sleep, it takes its locks with it.

• static methods can be synchronized, using the lock from the java.lang.Class instance

representing that class.

Page 29 of 48

James D Bloom

Communicating with Objects by Waiting and Notifying

• The wait() method lets a Thread say, “there’s nothing for me to do here, so put me in

your waiting pool and notify me when something happens that I care about.” Basically a

wait() call means “wait me in your pool”, or “add me to your waiting list”

• The notify() method is used to send a signal to one and only one of the threads that are

waiting in the same object’s waiting pool.

• The method notifyAll() works in the same way as notify(), only it sends the signal to all

of the threads waiting on the object.

• All three methods: wait(), notify(), and notifyAll() must be called from within a

synchronized context. A Thread invokes wait(), notify() and notifyAll() on a particular

object, and the thread must currently hold the lock on that object.

synchronize void doSomething() {

 while (spareResources <= 0) {

 wait();

 }

 spareResources--;

 // use resource

 spareResources++;

 notifyAll();

}

Deadlocked Threads

• Deadlocking is when thread executing grinds to a halt because the code is waiting for

locks to be removed from objects.

• Deadlocking can occur when a locked object attempts to access another locked object

that is trying to access the first locked object. In other words, both threads are waiting for

each other’s locks to be released; therefore, the locks will never be released.

• Deadlocking is bad, never do it.

Page 30 of 48

James D Bloom

APPENDIX A: KEYWORDS

Access Modifiers

• private – accessible only from within its own class

• protected – accessible only to classes in the same package or subclasses of the class

• public – accessible from any other class

Class, Method, and Variable Modifiers

• abstract – declare a class that cannot be instantiated, or a method that must be

implemented by a nonabstract subclass

• class – specify class

• extends – indicate the superclass a subclass is extending

• final – impossible to extend a class, override a method, or reinitialize a variable

• implements – indicates the interfaces that a class will implement

• interface – specify interface

• native – indicates a method is written in a platform-dependent language

• new – instantiate an object by invoking constructor

• static – method or variable belongs to class (not instant)

• strictfp – used in front of a method or class to indicate that floating-point numbers will

strictly follow the Java Specification for floating point calculation (i.e. only 64-bit) and

will no more accurate. strictfp therefore provides repeatability for different platforms.

• synchronised – indicates a method can be accessed by only one thread a time

• transient – prevents fields from being serialized, as transient fields are always skipped

when objects are serialized

• volatile – used on variables that may be modified simultaneously by other threads. This

warns the compiler to fetch them fresh each time, rather than caching them in registers.

This also inhibits certain optimisations that assume no other thread will change the values

unexpectedly. Since other threads cannot see local variables, there is never any need to

mark local variables volatile.

Flow Control

• break – exits from the block of code in which it resides

• case – executes a block of code, dependent on what the switch tests for

Page 31 of 48

James D Bloom

• continue – stops the rest of the code following this statement from executing in a loop

and then begins the next iteration of the loop, i.e. The break statement is used to exit from

a loop or switch statement, while the continue statement is used to skip just the current

iteration and continue with the next

• default – executes this block of code if none of the switch-case statements match

• do – executes a block of code one time, then, in conjunction with the while statement, it

performs a test

• else – executes an alternative block of code if an if test is false

• for – used to perform a conditional loop for a block of code

• if – used to perform a logical test for true or false

• instanceof – determines whether an object is an instance of a class superclass, or

interface

• return – returns from a method without executing any code that follows the statement

and can optionally return a variable

• switch – indicates the variable to be compared with the different case statements

• while – executes a block of code repeatedly while a certain condition is true

Error Handling

• catch – declares the block of code used to handle an exception

• finally – block of code, usually following a try-catch statement, which is executed no

matter what program flow occurs when dealing with an exception

• throw – used to pass an exception up to the method that called this method

• throws – indicates the method will pass an exception to the method that called it

• try – block of code that will be tried, but may cause an exception

• assert – evaluates a conditional expression to verify the programmer’s assumption,

throws AssertionError if condition “assumption” not true.

Package Control

• import – statement to import packages or classes into code

• package – specifies to which package all classes in a source file belong

Primitives

• 64-bit

Page 32 of 48

James D Bloom

o double – a 64-bit floating-point number (signed)

o long – a 64-bit integer (signed)

• 32-bit

o float – a 32-bit floating-point number (signed)

o int – a 32-bit integer (signed)

• 16-bit

o char – a 16-bit single Unicode character (unsigned)

o short – a 16-bit integer (signed)

• 8-bit

o byte – an 8-bit integer (signed)

• < 8-bit

o boolean – a value indicating true or false

Variable Keywords

• super – reference variable referring to the immediate superclass

• this – reference variable referring to the current instance of an object

Void Return Type Keyword

• void – indicates no return type for a method

Unused Reserved Words

• const – do not used this the correct keyword in Java is static

• goto – considered bad programming so not implemented in Java

Page 33 of 48

James D Bloom

APPENDIX B: QUICK SUMMARY

Primitive Variables’ Size
64-bit:

double
long

32-bit:
 float
 int
16-bit:
 char

short
8-bit:

byte
< 8-bit:
 boolean

Primitive Integer Variables’ Range
-2(bits-1) to 2(bits-1)-1

Member Visibility
private = class
default = package
protected = package + subclasses
public = all

Class Visibility
default = package
public = all

3 Types of Array Declaration
String[] days = {“su”, “mo”};
String []days = new String [] {“su”,”mo”};
String days[] = new String[2];

2 Main Array Exceptions
NullPointerException
ArrayIndexOutOfBoundsException

Class Definitions
Local / method / automatic / stack variables don’t get default values so must be initialized before
use.

final reference variables must be initialized before the constructor completes.

Page 34 of 48

James D Bloom

Polymorphism does not apply to overridden static methods. An instance reference variable used
to call a static method is converted into a class reference by the compiler and the instance
variable is not used.

abstract methods must be implemented by a subclass, so they must be inheritable. For that
reason abstract methods cannot be :

private.
final.
synchronized.
native.
strictfp

but abstract classes can be strictfp.

Interfaces can have constants, which are always implicitly public, static and final; explicit
declaration of these modifiers is optional.

Interfaces can extend one or more interfaces.

Character Formats
To specify a character using its Unicode value use a backslash followed by an 8-bit octal value
‘\000’ through ‘\377’ or by u or U followed by a four-digit hexadecimal value ‘\u0000’ (or
‘\U0000’) through ‘\uffff’ (or ‘\UFFFF’). The four digit hexadecimal value can be used to
specify the full range of Unicode characters.

Number Formats
octal leading zero (0127)
decimal no leading zeros (1245)
hexadecimal leading 0X or 0x (0XCAFE or 0xCAFE)

Numeric expressions always result in at least an int sized (32-bit) result never smaller.

Narrowing truncates high order bits (left-most bits).

Two’s Compliment
Flip the bits and add 1
Highest order bit is sign:

0 = +ve
1 = -ve

Shifts
Shifts can only be used on integers

>>, right shift
<<, left shift
>>> unsigned right shift (zero-filled right shift)

Page 35 of 48

James D Bloom

Division by Zero
1.2f/0 = Float.POSITIVE_INFINITY
-2.2d/0 = Double.NEGATIVE_INFINITY
0d/0 = Double.NaN
1l/0 = ArithmeticException

Bitwise Non-Lazy Boolean Operators
& AND
| OR
^ XOR
~ Compliment

Loops and if statements
(boolean expression) ? value if true : value if false

switch statements can only be evaluated by integers 32-bits or less, such as: bytes, short, char,
and int.

An else clause belongs to the innermost if statement to which it might possible belong, in other
words the closest preceding if that doesn’t have an else.

Labelled break / continue statements
outer:

do {
 if (…) {
 …
 continue outer;
 }
 } while (…) ;

Page 36 of 48

James D Bloom

Exceptions

The only exception to the finally-will-always-be-called rule is that a finally will not be invoked if
the JVM shuts down. That could happen if code from the try or catch blocks call
System.exit(int);

printStackTrace() is a useful method provided by Throwable that prints the stack trace from
where the exception occurred.

Asserts
assert (<boolean expression>) ;

assert (<boolean expression>) : “ <message> “ ;

Classes
A class literal is formed by appending .class to the name of a primitive or reference type. It
evaluates to the class descriptor of the reference type or class descriptor of the primitive type’s
wrapper class.

A subclass uses super.overiddenMethodName() to call an overridden superclass method whereas
an inner-class uses OuterClassType.this.overiddenMethodName() to call an overridden outer-
class method.

An abstract class has a constructor (called during object creation) but an interface does not.

Overloaded methods can change return types; overridden methods cannot.

From code outside an enclosing class’ instance methods, you can instantiate an inner class only
by using both the inner and outer class names, and a reference to the outer class.

MyOuter mo = new MyOuter();
MyOuter.MyInner mi = mo.new MyInner();

A method-local inner class cannot use variables declared within the method (including
parameters) unless these variable are marked final.

Object

Throwable

Exception Error

RuntimeException

Checked Exception
subject to handle or
declare rule

Page 37 of 48

James D Bloom

Technically, a static nested class is not an inner class, but instead considered a top- level nested
class.

A static inner class cannot access nonstatic members of the outer class, since it does not have an
implicit reference to any outer instance.

static nested classes are declared as follows:

MyOuter.MyStaticInner msi = new MyOuter.MyStaticInner() ;

Class Modifiers
 normal class:
 public
 abstract
 final
 strictfp

 inner class:
 public
 protected
 private

static
abstract

 final
 strictfp

 method- local inner class:
 abstract
 final
 strictfp

Anonymous inner classes
Runnable r = new Runnable() {
 public void run() { … }
} ;

java.lang.Object
If you don’t override equals() than an object won’t make a good hastable / hashmap key.

If x.equals(y) is true, then x.hashCode() == y.hashCode() is true.

If x.equals(y) is false, then x.hashCode() == y.hashCode() can be true or false, but false will
tend to create better efficiency.

If x.hashCode() != y.hashCode() is true, then x.equlas(y) is false.

transient variables aren’t appropriate for equals() and hashCode().

Collections
java.util.Collection is an interface which Set and List extend.

Page 38 of 48

James D Bloom

java.util.Collections is a class that holds static collection utility methods.

Vector synchronized ArrayList

Hashtable synchronized HashMap and no null keys or values

ArrayList fast iteration and fast random access

LinkedList good for adding and removing elements from ends and middle

HashSet no duplicates, no ordering

LinkedHashSet no duplicates, iterates by insertion order or last accessed

TreeSet no duplicates, iterates by natural sorted order

HashMap fastest updates, one null key many null values

LinkedHashMap faster iterations, iterates by insertion order of last accessed, one null key

many null values

TreeMap sorted map, in natural order

Linked* iterates by insertion order
*Map key-value pairs, one null key, many null values
Tree* sorted, iterates in natural order
*Set no duplicates
Hash uses more memory for faster access
*List order

Garbage Collection
To request garbage collection use System.gc();

The finlize() method is guaranteed to run once and only once before the garbage collection
deletes an object.

Reference Classes
StrongReference normal reference
SoftReference Used for memory sensitive caches but may stay for a while after reference

dropped
WeakReference Used for memory sensitive caches but quicker to be removed from

memory than SoftReference
PhantomReference A phantom object is one that has been finalized, but whose memory has

not yet been made available for another object.

Threads
Threads are created by using
 extends Thread

Page 39 of 48

James D Bloom

 or
 implements Runnable
 new Thread (Runnable);

Thread constructors:
 Thread()
 Thread(Runnable target)
 Thread(Runnable target, String name)
 Thread(String name)
 Thread(ThreadGroup group, Runnable target, String name)
 Thread(ThreadGroup group, String name)

Methods from java.lang.Thread class

public static void sleep(long millis) throws InterruptedException
public static void yield()
public final void join()
public final void setPriority(int newPriority)

Methods from java.lang.Object class

public final void wait()
public final void wait(long timeout)
public final void notify()
public final void notifyAll()

You can call start() on a Thread object only once. If start() is called more than once on a
Thread object, it will throw a RuntimeException. The isAlive() method can test whether start()
has been called and the Thread has not yet died. Therefore use start() as follows:

Thread t = new Thread();
if(!t.isAlive()) {
 t.start();
}

The sleep() is a static method that will sleep the currently executing Thread. One Thread
cannot tell another Thread to sleep.

The setPriority() method is used on Thread objects to give Threads a priority between 1 (low)
and 10 (high), although priorities are not guaranteed, and not all JVMs use a priority range of 1-
10.

A Thread’s implicit priority is the same as its creator.

The yield() method may cause a running Thread to back out if there are runnable threads of the
same priority. There is no guarantee that this will happen, and there is no guarantee that when
the Thread backs out there will be a different Thread selected to run. A Thread might yield()
and immediately re-enter the running state. Although, usually, if a low-priority Thread is
running when a high-priority Thread enters runnable, the JVM will pre-empt the running low-
priority Thread and put the high-priority Thread in the running state.

Page 40 of 48

James D Bloom

When one Thread calls the join() method of another Thread the currently running Thread will
wait until the Thread if joins with has completed.

To synchronize code either use the synchronized keyword with a method or use the
synchronized(obj) {… } block.

wait() put me in wait pool until notify() / notifyAll()
wait(long timeout) put me in wait pool until notify() / notifyAll() or timeout up
notify() wake up one Thread from the waiting pool
notifyAll() wake up all Threads from the waiting pool

All three methods: wait(), notify(), and notifyAll() must be called from within a synchronized
context.

synchronized void doSomething() {
 while(spareResource <=0) {
 wait();
 }
 spareResources--;
 // use resource
 spareResources++;
 notifyAll();
}

static methods can be synchronized, using the lock from the java.lang.Class instance
representing the class.

Thread Life Cycle

Not Runnable

Running

Dead

New Thread Runnable
start()

run() terminates

Scheduler
selects

yield()

1. notify() or notifyAll()
2. sleep() terminates
3. I/O finished
4. joined Thread dies

1. wait()
2. sleep(int)
3. blocking on I/O
4. join()
5. blocking on synchronized block

Page 41 of 48

James D Bloom

Important Methods in the String class
public char charAt (int index)
public String concat (String s)
public boolean equalsIgnoreCase (String s)
public int length() // be sure not to confuse with array length attribute
public String replace (char old, char new)
public String substring (int begin)
public String substring (int begin, int end) // begin is inclusive, end is exclusive (0 to length()-1)
public String toLowerCase()
public String toString()
public String toUpperCase()
public String tim()

The StringBuffer class
public string toString()

The following methods return the altered StringBuffer and alter the instance calling the method.
public synchronized StringBuffer append(String s)
public synchronized StringBuffer insert(int offset, String s) // inserted after offset
public synchronized StringBuffer reverse()

java.lang.Math class
public final static double Math.PI
public final static double Math.E

public static int abs(int input)
public static long abs(int long)
public static float abs(int float)
public static double abs(int double)

public static int max(int a, int b)
public static long max(long a, long b)
public static float max(float a, float b)
public static double max(double a, double b)

public static int min(int a, int b)
public static long min(long a, long b)
public static float min(float a, float b)
public static double min(double a, double b)

public static double random() // returns number in the range 0.0 to < 1.0

public static double ceil(double a)
public static double floor(double a)
public static int round(float a) // adds .5 then does a floor
public static long round(double a) // adds .5 then does a floor

public static double sin(double angrad)
public static double cos(double angrad)

Page 42 of 48

James D Bloom

public static double tan(double angrad)

public static double toRadian(double angdeg)
public static double toDegrees(double angdeg)

public static double sqrt(double a) // returns NaN when its argument is less than zero

NaN isn’t == to anything not even itself instead use:
public boolean isNaN() in both Float and Double

Math.sqrt(Double.NEGATIVE_INFINITY) == Double.NaN

Primitive Wrapper Class Constructor
boolean Boolean boolean or String
byte Byte byte or String
char Character char
double Double double or String
float Float float, double or String
int Integer int or String
long Long long or String
short Short short or String

Common Wrapper Conversion Methods
xxxValue() returns primitive of Wrapper
static parseXxxx(String s) returns primitive (throws NumberFormatException)
static parseXxxx(String s, int radix) returns primitive in radix base (throws NFE)

static valueOf(String s) returns Wrapper (throws NFE)
static valueOf(String s, int radix) returns Wrapper in radix base (throws NFE)

toString() returns String of Wrapper
static toString(primative) returns String of primitive
static toString(primitive, int radix) returns String of primitive in radix base
static toBinaryString() returns String of primitive in binary
static toHexString() returns String of primitive in hexadecimal
static toOctalString() returns String of primitive in octal

Method
s = static
n = NFE

Boolean Byte Character Double Float Integer Long Short

byteValue X X X X X X
doubleValue X X X X X X
floatValue X X X X X X
intValue X X X X X X
longValue X X X X X X
shortValue X X X X X X

parseXxx
s,n

 X X X X X X

Page 43 of 48

James D Bloom

parseXxx
s,n
(with radix)

 X X X X

valueOf
s,n

X X X X X X X

valueOf
s,n
(with radix)

 X X X X

toString X X X X X X X X
toString
s
(primitive)

 X X X X X X

toString
s
(primitive, radix)

 X X

toBinaryString
s

 X X

toHexString
s

 X X

toOctalString
s

 X X

Practice Question Notes
signed is not a valid modifier or keyword in Java

include in not a valid keyword, but goto is

single quotes are needed around character literal numbers i.e. ‘\u0000’

You can use static and final for a method declaration

Method visibility is a compile time error not a runtime error

interface variables are by default final static

interface variables cannot be transient

interface methods cannot be static or final

Implemented interface methods must always be public because access modifiers cannot restrict
implemented methods more than their interface declaration

Widening casts happen implicitly

Constant expressions i.e. 3-1 are allowed as a case parameter but not variable expressions

Remember to check boolean statements for single equals =

Page 44 of 48

James D Bloom

Keywords can be used as identifiers if they start with a capital letter

Be careful of while loops nested in do-while loops.

Either a catch or finally must follow a try block.

If a method does not handle an exception, the finally block is executed first before the exception
is propagated, otherwise the catch is executed first.

RuntimeException doesn’t need to be declared.

The expression after the colon : in an assert statement must be able to be implicitly converted to
a String.

It is sometimes good practice to throw an AssertionError explicitly.

Polymorphism uses the method of the instances’ type and not the reference variable

class A {

 public void name() {
 System.out.println(“A”);
 }
}

class B extends A {

 public void name() {
 System.out.println(“B”);
 }
}

A a = new B();
a.name(); // prints B

Remember non-private variables are passed to subclasses.

Watch out for constructors with a return type.

(long) x/y only casts x and not (x/y) therefore

(long) x/y
≡
((long)x)/y

substring(int beginIndex, int endIndex)
 beginIndex inclusive
 endIndex exclusive
 from 0 to String.length()-1

Page 45 of 48

James D Bloom

Don’t get StringBuffer and String methods confused.

Two primitive values of different types but equal in value will return true when tested for
equality.

sqrt(double a) will return Doubel.NaN if a is negative.

xxxValue() returns a primitive
parseXxx(String) returns a primitive
valueOf(String) returns a Wrapper

java.lang.StringBuffer uses the default equals() and hashCode() methods from Object

No duplicates are allowed in a Set

Watch for the static keyword on inner-classes

abstract types can be instantiated by using an anonymous class that overrides all abstract
methods

Thread implements Runnable and so a Thread instance can be passed to the Thread constructor

The sleep() methods throws InterruptedException

There are two versions of wait:
 public final void wait()

public final void wait(long timeout) // on wait queue until notify(), notifyAll() or
// timeout ends

Thread has three static ints:
 Thread.MIN_PRIORITY
 Thread.NORM_PRIORITY
 Thread.MAX_PRIORITY

Octal Hexadecimal Binary

1 1 1
8 16 2
64 256 4

512 4096 8
4096 65536 16

The ClassLoader class and the Class class can be used to load other classes

Method- local (local) inner classes are not associated with an instance of an outer (enclosing)
class.

Valid identifiers begin with a Unicode letter, underscore character (_), or dollar sign ($).
Subsequent characters consist of these characters and the digits 0-9.

The range of Char is 0 to 216-1

Page 46 of 48

James D Bloom

null is not a Java keyword.

Remember arithmetic rules are followed for Associativity therefore *, / and % have higher
precedence than + and – which has higher precedence than boolean operators which have
precedence in the following order &, ^, |, &&, ||. Otherwise expressions are left associative i.e.
bracketed from left to right

<< left shift fills with zeros
>> right shift fills with sign bit (i.e. if negative stays negative)
>>> right shift fills with zeros

a >> b ≡ a / 2b

a >>> b ≡ | a / 2b |
a << b ≡ a * 2b

A float or double value of Infinity cast to an integer is all-the-ones bit pattern
A float of double value of Negative Infinity cast to an integer is one-then-all-the-zeros bit pattern
as follows:

Integer.toBinaryString((int)Float.NEGATIVE_INFINITY)

outputs

1000 0000 0000 0000 0000 0000 0000 0000

Integer.toBinaryString((int)Float.POSITIVE_INFINITY)

outputs

1111 1111 1111 1111 1111 1111 1111 1111

Java Operators, order of precedence - from highest to lowest

Priority Operators Operation Associativity

[] array index

() method call 1

. member access

left

++ pre- or postfix increment

-- pre- or postfix decrement

+ - unary plus, minus

~ bitwise NOT

! boolean (logical) NOT

2

(type) type cast

right

Page 47 of 48

James D Bloom

new object creation

3 * / % multiplication, division, remainder left

+ - addition, substraction
4

+ string concatenation
left

<< signed bit shift left

>> signed bit shift right 5

>>> unsigned bit shift right

left

< <= less than, less than or equal to

> >= greater than, greater than or equal to 6

instanceof reference test

left

== equal to
7

!= not equal to
left

& bitwise AND
8

& boolean (logical) AND
left

^ bitwise XOR
9

^ boolean (logical) XOR
left

| bitwise OR
10

| boolean (logical) OR
left

11 && boolean (logical) AND left

12 || boolean (logical) OR left

13 ? : conditional right

= assignment

14 *= /= += -= %=
<<= >>= >>>=
&= ^= |=

combination assignment
(operation and assignment)

right

Page 48 of 48

James D Bloom

References

Much of this text was copied from Sun Certified Programmer & Developer for Java 2 by
Osborne Certification Press ISBN 0-07-222684-6.

