Page 1 of 48

SUN CERTIFIED PROGRAMMER FOR JAVA 2 ..ottt 3
SOUICE FIES ...ttt b et s a e bt et e s bt e sbe s neesaeesbeeatesneenbean 3
0000 PP 3
Java Programming Language KEYWOITS ..........ccceereeieieeseeeseese e e e see e see e esae e snas 3
Literals and Ranges of All Primitive Data TYPES.......cccoveveeieiiesece et 3
Array Declaration, Construction, and INitialiZation............cccoeveeeiieniiecieesiee e 4
Using a Variable or Array Element that is Uninitialized and Unassigned.............ccccccevueneee. 6
ClasS ACCESS MOUITIENS. .....ccuiieriirieriieieee ettt bbbttt st st b s e eneas 6
ClassS MOAITIErS (NOMFACCESS).......cciueeirieitieciieesieesire e st e esreesteesreesseesseesseesbeesseeesseesseesnseesreeanees 6
MeMbDEr ACCESS MOUITIENS......uiiieiieiece et sre et e sneesreenee e 6
LOCE VATADIES......coiiiecieciee ettt bbbt nes 7
Other MOdIfiers — MEMDEIS ... e e 7
Static variables and MEtNOOS ...........c.ooiiii e 9
DEClaration RUIES..........oiiieieieee ettt b et enes 9
PropertieS of MAIN( ) .....oieeeece et e e s r e e eesreesreeresneennean 10
Javalang.RUNNADIE...........ooeee s 10
Interface IMPIEMENTALION. ..o 10
2 =N @ o< - 0] £SO SP R 11
String ObjectS aNd REFEIENCES.......ccuiiieeeeee e 11
COMPATSON OPEFAEONS ...ttt ettt sttt e e besbesbesbe s bt ese e e e e e b e nbeseesbeeseeaeennens 12
o L Y@ 0 = o SO 12
ATTNMELIC OPEIEIOIS ......vee ittt s ee et e s e e sbe e sate e b e e snaeenreesnreesreeannas 12
String ConCatenation OPEIBION ..........cveuerierierierieeie st sre st sr b e b e neeneens 12
Increment / DeCremMeNnt OPEIELOIS..........ueiueeeereeriereesreeseeeeeseesseseesseessesseesseesesseesseessesseesses 12
S TN O] 0T = (0] £ T 13
LY X @ o1 £ (0] £ ROSPR 13
Ternary (Conditional OPEFELOL) .........coeririereririeieee ettt 13
L= 11 o S 13
0T [[or= IO o 1= £ (0] £SO RPR 14
Passing Variables int0 MEhOUS.............ooiiiiiieeeee e 14
Writing Code using if and SWitCh SEAtEMENES...........cocveeeeeereee e 14
WIiting Code USING LOOPS. ......uiiiiiiiiiiieiieeiteesiteeteeseeesteesrae e beessaeessessnteesseesnseesseesnseenseesnnes 16
USING break and CONLINUE .........oiueeieiiiiieie ettt et e b neeeneennis 16
Catching an Exception Using try and CatCh ...........ccceveeveecisicse e 16
Working with the Assertion MeChaniSm............cccceeiieie e 17
ENCAPSUIBLION.......cceieceie et e e e e r e et e e s b e e e e e s reeeaneenreeannas 18
Overriding and OVENTOAING ..........ciirieieieriere bbb 19
Instantiation and CONSIIUCLOIS .........coeiiiiienerieieee et be b 20
S LU T IR/ 0 SRR PSRN 21
INNEN ClBSSES ... i itieieeiesieesteee st te et et e et e re e e s e e steeseeseesbeenteeseesseenseeneenseensesneesseensenneensenn 21
MELhOO-LOCAl INNEI ClESSES .....coueiieieriisie sttt bbb 22
ANONYMOUS [NNEN CIESSES ....ccviiiiieiiie ettt ettt sb e st e et e e s e e e sseesnreenbeeenns 22
SLALIC NESIEU ClASSES ... coiveeiieieesiieie ettt sttt s re e beeeesreesbeensesseesbeentesreesseenseans 23
Overriding hashCode( ) and €QUAIS( ) .....ecovveeerierr e 23
(0001 1= o0 SRS 24
Garbage COlIECLION.........coeieeeece e et e e e sae e eare e 25
Creating, Instantiating, and Starting New Threads.............coevienenineeeiesese e 26
Transition Between Thread SEALES .........ccviiieririeieee e 27
S L= I AT= Lo =0 o o1 o IR SOR 27
Concurrent Access Problems and synchronized Threads............ccooieiiieieiinc s, 28

James D Bloom



Page 2 of 48

Communicating with Objects by Waiting and NOtifying ........ccccceeeevevieevescecece e, 29
DeadloCKed TRIEAAS ........couiiieeee e e st 29
APPENDIX A: KEYWORDS ........oooiiieieiisie sttt sttt saesaesaestesresnasseeseenens 30
ACCESS IMOTITIENS ...ttt b ettt et et e e s bbb e nenneenean 30
Class, Method, and Variable MOAIfIers........coiiiinineeeseses e 30
FIOW CONEIOL ...ttt e ne e be et e sneesreeneeeneennenn 30
EITOr HANGING ..ottt bbbt 31
PaCKAGE CONLIOL........cceeieeeieeie ettt e te e st e e sae e teetesseesseesseeneesseensesseesseensenneensenn 31
PIIMITIVES ...ttt s ae e s be et e e st e s be et e saeesbeensesneennenn 31
VariaDl@ KEYWOITS ..ottt 32
VOoid REtUN TYPE KEYWOIT .......ocueeieeeiecee ettt e et aesreesneeneeneenne s 32
UNUSEA RESENVE WOITS.......coueiiiiieieieieee ettt bbbt e 32
APPENDIX B: QUICK SUMMARY ..ottt see sttt sae e sse st ssesne e eneenens 33
Primitive VariablES SIZE.......co it 33
Primitive Integer VariableS RaNQE ........ccvceeiuicie ettt 33
MEMDEr ViISIDIITY ...cviiviceciecece ettt resreene e eneas 33
(O S VA1 o1 1 /S 33
3 Types Of Array DECIAralioN .........ccccueiieiiieieceesie et ee et ae e et re e sneenne e 33
2 MaiN Array EXCEPLIONS ........coiiiiiie ettt sttt e s be e s ae e e neenneeenne e 33
(O =SSR I T T 0] SR 33
(O = e g o0 7= KOTSRS 34
NUMDES FOMMIBES ...ttt st b et st b e et e saeesbeesesne e b s 34
TWO'S COMPIIMENL ...ttt e e r b e b b ne e 34
SIS ettt bbb bRttt et et bbb e 34
DRV TS o g1 A= o LSO 35
Bitwise Non-Lazy BOOIEaN OPEIalOrS. ........ecieeiiieiee e esiee e esree e seeste e sree e e sneesnee e 35
LOOPS @NA i SLELEMENTS ......coueiieeeeeeie ettt b bbbt 35
Labelled break / continue SEAlEMENTS .........coieririeeee e 35
(= o1 o 1RO 36
S < 1 £ TSROSO 36
ClBSSES ...ttt a b b h b AR bbbt Rttt b et R b be e e 36
(O =SSR 1Y T 1 1= £ TSRO 37
ANONYMOUS INNEF CIESSES ....c.veiiiiieiiie et sttt eesreesreeneesneense s 37
[ Y= = a0 K o o S 37
(0001 1= o0 SRS 37
Garbage COlIECLION.........coee et sre e enre e 38
REFEIENCE ClaSSES ... ecuee ettt ettt esaeesesseesaeentesneesseensenneennenn 38
TRFEAAS ...ttt b bbb b 38
TRrEAO LIf@ CYCI@ ..ttt st e e e eere e s beeeneeenree s 40
Important Methods in the SIFiNg ClasS. ..o 41
The SIFINGBUFTEr CLaSS .....c.eeieee et 41
JaVAIANG.MALN ClaSS......ccciiiiece e e 41
Common Wrapper ConNVErsion MetNOUS ..........coeiiriiieeeenesee e 42
Practice QUESLION NOLES.........cccuiiiieeiiee ettt re e e e sre e sare e sbeesareesreesnreenreeennes 43
Java Operators, order of precedence - from highest to lowest ...........ccocoveeveecicce e, 46
B (= = 16T 48

James D Bloom



Page 3 of 48

SUN CERTIFIED PROGRAMMER FOR JAVA 2

Thisis a complete set of notes containing every thing you need to know for the SUN
CERTIFIED PROGRAMMER FOR JAVA 2 EXAMS 310-035 & 310-027

Source Files

If a source code file does not contain a public class or interface it can take on a name that
is different from its classes and interfaces.

A source code file cannot contain more than one public class or interface.

Imports

Thejava.lang package is aways imported by default and does not need to be imported by
an import statement.

Java Programming Language Keywords

Keywords cannot be used as identifiers (names) for classes, methods, variables, or
anything else in your code.

All keywords start with a lowercase |etter.

Literals and Ranges of All Primitive Data Types

All six number types in Java are signed, so they can be positive or negative.
Use the formula -2 to 211 to determine the range of an integer type.
A char isredlly a 16-bit unsigned integer (Unicode character).
Literals are source code representations of primitive data types, or a ring.
Integers can be represented in octal (0127), decimal (1245), and hexadecimal (OXCAFE
or OXCAFE).
Suffixes:
0 doubled or D (64-hit signed floating-point number)
o longl or L (64-hit signed integer)
o float f or F (32-bit signed floating-point number)
Floating-point numbers are assumed to be double if no suffix is specified.
Lega formats:
digits . optional Digits optional Exponent suffix
. digits optional Exponent suffix

James D Bloom



Page 4 of 48

digits optiona Exponent suffix

The optional exponent part consists of an e or E followed by a signed integer.
If afloating-point literal does not contain a decimal point then it needs to have either the
exponent part or the suffix to be recognised as a floating-point literal as opposed to an
integer literal.
Character escape codes

o \b - backspace
\t —tab
\n — line-feed
\f — form-feed
\r — carriage return
\" — double quote
\" —single quote
\\ —backdash
The backslash can also be followed by an 8-hit octal value \000 through \377 or by uor U
followed by afour-digit hexadecimal value \u0O00O (or \UOO00) through \uffff (or
\UFFFF). Thefour digit hexadecimal value can be used to specify the full range of

©O O 0O o o o o

Unicode characters.
A classlitera isformed by appending .classto the name of a primitive or reference type.
It evaluates to the class descriptor of the reference type or class descriptor of the

primitive type’ s wrapper class.

Default values:
0 boolean false
o byte 0
0 char \u0000
o short 0
o int 0
o long ol
o float 0.0f
0 double 0.0

Array Declaration, Construction, and Initialization

Arrays can hold primitives or objects, but the array itself is always an object.

When you declare an array, the brackets can be to the left or right of the variable name.

James D Bloom



Page 5 of 48

It is never legal to include the size of anarray in the declaration.
Y ou must include the size of an array when you construct it using new unless you are

creating an anonymous array. i.e:

Sring[] weeks = new Sring[52];
Sring[] days= new Sring[] {"Su", "Mo", "Tu", "We", "Th", "Fr", "Sa"};

You can also create and initialize arrays without the new keyword although this can only

be done in an array declaration i.e:

Sring[] days= {"su", "Mo", "Tu", "We", "Th", "Fr", "Sa"};

Elementsin an array of objects are not automatically created, although primitive array
elements are given default values.

You'll get a NullPointer Exception if you try to use an array element in an object array, if
that element does not refer to areal object.

Arrays are indexed beginning with zero. In an array with three elements, you can access
element O, element 1, and element 2.

You'll get an ArraylndexOutOfBoundsException if you try to access outside the range of
anarray.

Arrays have a length variable that contains the number of elements in the array.

The last index you can access is aways one less that the length of the array.
Multidimensional arrays are just arrays of arrays.

The dimensions in a multidimensional array can have different lengths.

An array of primitives can accept any value that can be promoted implicitly to the
declared type of the array. For example, a byte or short can be placed in an int array.

An array of objects can hold any objects that passes the IS-A (or instanceof) test for the
declared type of the array. For example, if Horse extends Animal then a Horse object can
gointo an Animal array.

Y ou can assign an array of one type to a previously declared array reference of its
supertypes. For example, a Honda array can be assigned to an array declared as type Car

(assuming Honda extends Car).

James D Bloom



Page 6 of 48

Using a Variable or Array Element that is Uninitialized and Unassigned

When an array of objects in instantiated, objects within the array are not instantiated
automatically, but all the references get the default value of null.

When an array of primitivesis instantiated, all elements get their default values.

Just as with array elements, instance variables are dways initialized with a default value.
Local / automatic / method variables are never given a default value. If you attempt to

use one before initializing it you'll get a compiler error.

Class Access Modifiers

There are three access modifiers. public, protected and private.
There are four access levels: public, protected, default and private
Classes can have only public or default access
Class visihility revolves around whether code in one class can:
0 Create an instance of another class
o Extend (or subclass), another class
0 Access methods and variables of another class
A class with default access can be seen only by all classes within the same package.

A class with public access can be seen by all classes from all packages.

Class Modifiers (non-access)

Classes can aso be modified with final, abstract or strictfp.

A classthat is abstract cannot also be final.

A method that is abstract cannot also befinal or private.

A final class cannot be subclassed.

An abstract class cannot be instantiated.

A single abstract method in a class means the whole class must abstract and must be

declared as so.
An abstract class can have both abstract and non-abstract methods.

The first concrete class to extend an abstract class must implement all abstract methods.

Member Access Modifiers

Methods and instance (nonlocal) variables are known as “members’.

Members can use al four levels. public, protected, default and private.

James D Bloom



Page 7 of 48

Member access comes in two forms:
o Codein one class can access a member of another class.
0 A subclass can inherit a member of its superclass.
If aclass cannot be accessed, its members cannot be accessed.
Determine class visibility before determining member visibility.
public members can be accessed by al other classes, even in different packages.
If a superclass member is public, the subclass inherits it — regardless of package.
this. Always refers to the currently executing object.
private members can be accessed only by code in the same class
private members are not visible to subclasses, so private members cannot be inherited,
and therefore cannot be abstract.
Default and protected members differ only in when subclasses are involved:
o Default members can be accessed only by other classes in the same package.
0 protected members can be accessed by other classes in the same package, plus
subclasses regardless of the package.
protected = package + subclasses
Default = package only
A protected member inherited by a subclass from another package is not accessible to

any other class in the subclass package, except for the itsown subclasses.

Local Variables

Local (method, automatic, stack) variable declarations cannot have access modifiers.
final isthe only modifier available to local variable.

Local variables don't get default values, so they must be initialized before use.

Other Modifiers — Members

final methods cannot be overridden in a subclass

abstract methods must be declared, with a signature and return type, but are not
implemented.

abstract methods end in a semicolon — no curly braces.

Three ways to spot a nonabstract method:
0 The method is not marked abstract

0 The method has curly braces

James D Bloom



Page 8 of 48

0 The method has code between the curly braces
The first nonabstract (concrete) class to extend an abstract class must implement all of
the abstract class' abstract methods.
abstract methods must be implemented by a subclass, so they must be inheritable. For
that reason:
0 abstract methods cannot be private
abstract methods cannot be final.
abstract methods cannot be synchronized.
abstract methods cannot be native.
abstract methods cannot be strictfp.

©O O o o

abstract class can be strictfp.
The strictfp modifier is used in front of a method or class to indicate that floating-point
numbers will strictly follow the Java Specification for floating point calculation (i.e. only
64-bit) and no more accurate. strictfp therefore provides repeatability for different
platforms.
The synchronized modifier applies only to methods.
synchronized methods can have any access control and can be marked final.
synchronized methods cannot be abstract.
The native modifier applies only to methods.
The strictfp modifier applies only to classes and methods.
Instance variables can

0 Have any access control

0 Be marked final or transient
Instance variables cannot be declared abstract, synchronized, native or strictfp.
It islegd to declare alocal variable with the same name as an instance variable; thisis
called “shadowing”
final variables have the following properties

o final variables cannot be reinitialized once assigned avalue.

o final reference variables cannot refer to a different object once the object has been

assigned to the final variable.

o final reference variables must be initialized before the constructor compl etes.

There is no such thing as afinal object. An object reference marked final does not mean

the object itself is immutable.

James D Bloom



Page 9 of 48

The transient modifier applies only to instance variables.

The volatile modifier applies only to instance variables.

Thetransent modifier prevents field from being serialized, as transient fields are aways
skipped when objects are serialized.

The volatile modifier is used on variables that may be modified simultaneously by other
threads. This warns the compiler to fetch them fresh each time, rather than caching them
in registers. This also inhibits certain optimisations that assume no other Thread will
change the values unexpectedly. Since other threads cannot see local variables, there is

never any need to mark local variables volatile.

Static variables and methods

They are not tied to any particular instance of a class

An instance of a class does not need to exist in order to use static members of the class.
There isonly one copy of a static variable per class and all instances share it.

static variables get the same default values as instance variables.

A static method (such as main( )) cannot access a nonstatic (instance) variables.

static members are accessed using the class name as follows
ClassName.theStaticMethod( ).

static members can also be accessed using an instance reference variable,
someObj.theSaticMethod( ) but that’s just a syntax trick. The complier uses the class
type of the reference variable to determine which static method to invoke.

static methods cannot be overridden, although they can be redeclared / redefined by a
subclass. So although static methods can sometimes appear to be overridden,

polymorphism will not apply.

Declaration Rules

A source code file can have only one public class.

If the source file contains a public class, the file name should match the public class
name.

A file can have more than one non-public class.

Files with no public classes have no naming restrictions.

In afile, classes can be listed in any order (there is no forward referencing problem).

import statements only provide a typing shortcut to aclass fully qualified name.

James D Bloom



Page 10 of 48

import statements cause no performance hits and do not increase the size of your code.
importsending in .*; are importing all classes within a package.

importsending in ; are importing asingle class.

You must use fully qualified names when you have different classes from different

packages, with the same class name; an import statement will not be explicit enough.

Properties of main()

It must be marked static.

It must have a void return type.

It must have asingle String[] argument.

For the purposes of the exam assume that the main( ) method must be public.

Improper main( ) method declaration (or the lack of amain() method) cause a runtime
error ot acompiler error.

In the declaration of main( ), the order of the keywords public and static can be switched.

java.lang.Runnable

Thejava.lang.Runnable interface has a single method

public void run( );

Interface Implementation

Interfaces are contracts for what a class can do, but they say nothing about the way in
which the class must do it.

Interfaces can be implemented by any class, from an inheritance tree.

An interface is like a 100-percent abstract class, and isimplicitly abstract whether you
type the abstract modifier in the declaration or not, athough an interface doesn’'t have a
constructor (or get constructed) and an abstract class does.

An interface can only have abstract methods, no concrete methods are allowed.
Interfaces are by default public and abstract — explicit declaration of these modifiersis
optional.

Interfaces can also be declared strictfp.

Interfaces can have constants, which are aways implicitly public, static and final.
interface constants cannot be transient.

interface methods cannot be native, strictfp or synchronized.

James D Bloom



Page 11 of 48

interface constant declarations of public, static and final are optional in any combination.
A lega nonabstract implementing class has the following properties:
o It provides concrete implementations for al methods from the interface.
o It must follow all legal override rules for the methods it implements.
o It must not declare any new checked exceptions for an implementation method.
0 It must not declare any checked exceptions that are broader than the exceptions
declared in the interface method, but does not have to declare the exceptions of
the interface.
o It may declare runtime exceptions on any interface method implementation
regardless of the interface declaration.
o0 It must maintain the exact signature and return type of the methods it implements
(but does not have to declare the exceptions of the interface).
A classimplementing an interface can itself be abstract.
An abstract implementing class does not have to implement the interface methods (but
the first concrete subclass must).
A classcan extend only one class (no multiple inheritance), but it can implement many
interfaces.
Interfaces can extend one or more other interfaces.
Interfaces cannot extend a class, or implement aclass or interface.
When taking the exam, verify that interface and class declarations are legal before

verifying other code logic.

Java Operators

An unassigned reference variable' s bits represent null.

There are 12 assignment operators. =, *=, /=, %=, +=, -=, <<=, >>=, >>>= &=, =, |=
Numeric expressions always result in at least an int-sized result never smaller.
Floating-point numbers are implicitly doubles (64-hits)

Narrowing a primitive truncates the high-order bits.

To convert to or from Two’'s Complement: flip all the bits, then add 1

Compound assignments (e.g. +=) perform an automatic cast.

String Objects and References

Sring objects are immutable, and cannot be changed

James D Bloom



Page 12 of 48

When you use a String reference variable to modify a Sring:
0 A new String is created (the old String is immutable)

0 Thereference variable is set to the new String.

Comparison Operators

Comparison operators always result in a boolean value (true or false)
There are four comparison operators. >, >=, <, <=
When comparing characters, Java uses the ASCII or Unicode value of the number as the

numerical value.

Equality Operator

Four types of things can be tested: numbers, characters, booleans, reference variables.

There are two equality operators. == and !=

Arithmetic Operators

There are four primary operators: add, subtract, multiply, and divide

The remainder operator returns the remainder of adivision.

When floating-point numbers are divided by zero, they return positive or negative
infinity, except when the dividend is aso zero, in which case you get NaN.

When the remainder operator performs a floating-point divide by zero, it will not cause a
runtime exception.

When integers are divided by zero, a runtime Arithmeti cException is thrown.

When the remainder operator performs an integer divide by zero, aruntime
ArithmeticException is thrown.

String Concatenation Operator

If either operand is a String, the + operator concatenates the operands.

If both operands are numeric, the + operator adds the operands.

Increment / Decrement Operators

Prefix operator runs before the value is used in the expression.
Postfix operator runs after the value is used in the expression.
In any expression, both operands are fully evaluated before the expression is applied.

final variable cannot be incremented or decremented.

James D Bloom



Page 13 of 48

Shift Operators

There are three shift operators. >>, <<, >>>; the first two are signed the last is unsigned.
Shift operators can only be used on integer types.
Shift operators can work on all bases of integers (octal, decimal or hexadecimal)
Except for the unusual cases of shifting an int by a multiple of 32 or along by a multiple
of 64 (these shifts result in no change to the original values), bits are filled as follows:

o <<fillstheright bitswith zeros

o >>fillsthe left bits with whatever value the original sign bits (leftmost bit) held.

o >>>fillsthe left bits with zeros (negative numbers will become positive)
All bit shift operands are promoted to at least an int.

For int shifts> 32 or long shifts > 64, the actual shift value is the remainder of the right
operand divided by 32 or 64 respectively.

Bitwise Operators

There are three bitwise operators &, *, | and a bitwise complement operator ~.

The & operator setsabit to 1 if both operand’ s bits are set to 1 and is therefore a bitwise
AND operator.

The " operator setsabit to 1 if exactly one operand’ s bit is set to 1 and thereforeisa
bitwise XOR operator.

The | operator setsabit to 1 if at least one operand’s bit is set to 1 and thereforeisa
bitwise OR operator.

The ~ operator reverses the value of every bit in the single operand.

Ternary (Conditional Operator)

someVariable = (boolean expression) ? value to assign if true : valueto assign if false
Returns one of two values based on whether a boolean expression is true of false.
The value after the ? is the “if true return”

The vaue after the : isthe “if false return”

Casting

Implicit casting (you write no code) happens when a widening conversion occurs.

Explicit casting (you write the cast) is required when a narrowing conversion is desired.

James D Bloom



Page 14 of 48

Casting a floating point to an integer type causes all digitsto the right of the decimal
point to be lost (truncated).

Narrowing conversion can cause loss of data— the most significant bits (Ieftmost) can be
lost.

Logical Operators

There are fivelogical operators: *, &, |, &&, ||

Logical operators work with two expressions that must resolve to boolean values.
The && and & (AND) operators return true only if both operands are true.

The | and || (OR) operatorsreturn true if either (or both) operands are true.

The ™ (XOR) operator return true if either (but not both) operands are true.

The && and || operators are known as short-circuit operators.

The & & operator does not evaluate the right operand if the left operand is false.
The || operator does not evaluate the right operand if the left operand is true.

The &, | and ” operators always evaluate both operands.

Passing Variables into Methods

Methods can take primitive and / or object references as arguments.

Method arguments are always copies of either primitive variables or reference variables.
Method arguments are never actual objects (they can be references to objects).

In practice, a primitive argument is a completely detached copy of the original primitive.

In practice, areference argument is another copy of areference to the original object.

Writing Code using if and switch Statements

The only legal argument to an if statement is a boolean, so the if test can be only on an
expression that resolves to a boolean or a boolean variable.

Watch out for boolean assignments (=) that can be mistaken for boolean equality (==
tests.

Curly braces are optional for if statement that have only one statement, but watch out for
misleading indentation.

switch statements can be evaluate only the byte, short, int and char data types, i.e. only

integers 32-bits or less.

James D Bloom



Page 15 of 48

When switching on a variable smaller than an int all the case arguments must be able to
be cast to the smaller variable type without affecting their value.

byte g = 2; // max byte value is 127

switch (g) {

case 23:

break;

case 128:

break; // compiler error:
I/ possible loss of precision
// found: int
I required: byte
}
The while condition of a do-whilerequires a semicolon at the end.
do{

} while(...);

The case argument must be a literal or final variable. You cannot have a case that
includes a non-final variable, or arange of values.

If the condition in a switch statement matches a case value, execution will run through all
code in the switch following the matching case statement until a break or the end of the
switch statement is encountered. In other words, the matching case is just the entry point
into the case block, but unless there's a break statement, the matching case is not the
only case code that runs.

The default keyword should be used in a switch statement if you want to execute some
code when none of the case values match the conditiona value.

The default block can be located anywhere in the switch block so if no case matches, the
default block will be entered, and if the default does not contain a break, then code will

continue to execute (fall-through) to the end of the switch or until the break statement is

encountered.

James D Bloom



Page 16 of 48

Writing Code Using Loops
A for statement does not require any arguments in the declarations, but has three parts:
declaration and / or initialization, boolean evaluation, and the iteration expression.
If avariable isincremented or evaluated within afor loop, it must be declared before the
loop, or within the for loop declaration.
A variable declared (not just initialized) within the for loop declaration cannot be
accessed outside the for 1oop.
Both the initialize and iteration expressions can have more than one statement each
separated by a comma, all variables initialized this way must be the same type.
The conditional expression can not have more than one statement.

The do-while loop will enter the body of the loop at least once, even if the test condition
IS not met.

Using break and continue

An unlabeled break statement will cause the current iteration of the innermost looping
construct to stop and the next line of code following the loop to be continued.

An unlabeled continue statement will cause the current iteration of the innermost loop to
stop, and the condition of that loop to be checked, and if the condition is met, perform the
loop again.

If the break statement or the continue statement is labelled, is will cause smilar action to

occur on the labelled loop, not the innermost loop, i.e.

outer:
while(true) {
do{
System.out.printin(* Hello™);
break outer;
} while (false) ;
}

If a continue statement is used in afor loop, the iteration statement is executed, and the

condition is checked again.

Catching an Exception Using try and catch

Exceptions come in two flavours: checked and unchecked

James D Bloom



Page 17 of 48

Checked exceptions include all subtypes of Exception, excluding classes that extend
RuntimeException.

Checked exceptions are subject to the handle or declare rule; any method that might
throw a checked exception (including methods that invoke methods that can throw a
checked exception) must either declare the exception using the throws keyword, or
handle the exception with an appropriate try - catch.

Subtypes of Error or RuntimeException are unchecked, so the compiler doesn’t enforce
the handle or declare rule. Y ou're free to handle them, and your free to declare them, but
the compiler doesn’t care one way or the other.

If you use an optional finally block, it will always be invoked, regardless of whether an
exception in the corresponding try is thrown or not, and regardless of whether a thrown
exception is caught or not.

The only exception to the finally-will-always-be-called rule is that afinally will not be
invoked if the VM shuts down. That could happen if code from the try or catch blocks
cals System.exit(int), in which case the VM will not start your finally block.

Just because finally is invoked does not mean it will complete. Code in the finally block
could itself raise an exception or issue a System.exit(int).

Uncaught exceptions propagate back through the call stack, starting from the method
where the exception is thrown and ending with either the first method that has a
corresponding catch for that exception type or a VM shutdown (which happens if the
exception gets to main( ), and main() is “ducking” the exception by declaring it).

Y ou can create your own exceptions, normally by extending Exception or one of its
subtypes. Y our exception will then be considered a checked exception, and the compiler
will enforce the handle-or-declare rule for that exception.

All catch blocks must be ordered from most specific to most genera. For example, if
you have a catch clause for | OException and Exception, you must put the catch for

| OException first. Otherwise, the |OException would be caught by catch(Exception €),
because a catch argument can catch the specified exception or any of its subtypes. The
compiler will stop you from defining catch clauses that can never be reached (because it

sees that the more specific exception will be caught first by the more general catch).

Working with the Assertion Mechanism

Assertions give you away to test your assumptions during development and debugging.

James D Bloom



Page 18 of 48

Assertions are typically enabled during testing but disabled during deployment.

assert statements have the following syntax:

assert ( <boolean expression> );

or

assert ( <boolean expression> ) : “ <string message>" ;

You can use assert as akeyword or an identifier, but not both together. To compile code
that uses assert as an identifier (for example, a method name), use the —source 1.3
command-line flag to javac. To compile code that uses assert as a keyword use the —
source 1.4 flag to javac.

Assertions are disabled at runtime (and compile-time) by default. To enable them, use a
command- line flag —ea or —enableassertions.

Y ou can selectively disable assertions using the —da or —disableassertions flag.

If you enable or disable assertions using the flag without any arguments, you’ re enabling
or disabling assertions in general. 'Y ou can combine enabling and disabling switchesto
have assertions enabled for some classes and or packages, but not others.

Y ou can enable or disable assertions in the system classes with the —esa or —dsa flags.

Y ou can enable and disable assertions on a class-by-class basis, using the following
syntax:
java -ea -da:MyClass TestClass

Y ou can enable and disable assertions on a package basis, and any package you specify
also includes any subpackages (packages further down the directory hierarchy)
java -ea -da: mypackage.subpackage TestClass

Do not use assert expressions to validate arguments to public methods.

Do not use assert expressions that cause side effects. Assertions aren’t guaranteed to
always run, so you don’t want behaviour that changes depending on whether assertions
are enabled.

Do use assertions to validate that a particular code block will never be reached, by using:
assert false; this will throw an assertion error immediately if the assert statement is

executed.

Encapsulation

The goal of encapsulation is to hide an implementation behind an interface (or API).

Encapsulated code has two features:

James D Bloom



Page 19 of 48

0 Instance variables are kept protected (usually with the private modifier)
0 Getter and setter methods provide access to instance variables

IS-A refers to inheritance

IS-A is expressed with the keyword extends

HAS-A means an instance of one class “has @ reference to an instance of another class.

Overriding and Overloading

Instance methods can be overridden or overloaded; constructors and static methods can
be overloaded but not overridden.
abstract methods must be overridden by the first concrete (nonabstract) subclass.
With respect to the method it overrides, the overriding method
0 Must have the same argument list
Must have the same return type
Must not have a more restrictive access modifier
May have aless restrictive access modifier

Must not throw new or broader checked exceptions

O O O o o

May throw fewer or narrower checked exceptions, or any unchecked exception
final methods cannot be overridden, and therefore cannot be abstract.
Only inherited methods may be overridden.
A subclass uses super.overriddenMethodName( ) to call the superclass version of an
overridden method.
Overloading means using the same method name, but with different arguments.
Overloaded methods
0 Must have different argument lists
o0 May have different return types, as long as the argument lists are also different
o May have different access modifiers
0 May throw different exceptions
M ethods from a superclass can be overloaded in a subclass.
Polymorphism applies to overriding, not to overloading.
Object type (of the calling instance) determines which overridden method is used at
runtime.
Reference type (of the method parameters) determines which overloaded method will be

used at compile time.

James D Bloom



Page 20 of 48

Instantiation and Constructors

Objects are constructed:

0 You cannot create a new object without invoking a constructor

o0 Each superclassin an object’s inheritance tree will have one of its constructors
cdled

Every class, even abstract classes, has at |east one constructor.

Constructors must have the same name as the class.

Constructors do not have areturn type. If thereisareturn, thenit is smply a method
with the same name as the class, and not a constructor.

Constructors execution occurs as follows:

0 The constructor calls its superclass constructor, which call its superclass
constructor, and so on all the way up to the Object constructor.

0 The Object constructor executes and then returrs to the calling constructor, which
runs to completion and then returns to its calling constructor, and so on back
down to the constructor of the actual instance being created.

Constructors can use any access modifiers (even private).

The compiler will create a default constructor if you don’t create any constructors in your
class.

The default constructor is a public no-argument constructor with a no-argument call to
super ().

The first statement of every constructor must be a call to either this() (an overloaded
constructor) or super( ).

The compiler will add a call to super( ) if you do not, unless you have already put in a
cal to this().

Instance methods and variables are only accessible after the super() constructor runs.
abstract classes have constructors that are called when a concrete subclass is instantiated.
Interfaces do not have constructors.

If your superclass does not have a no-argument constructor, you must create a constructor
and insert acall to super( ) with arguments matching those of the superclass constructor.
Constructors are never inherited, thus they cannot be overridden.

A constructor can be directly invoked only by another constructor, using a call to super( )
or this( ).

Issues with callsto this():

James D Bloom



Page 21 of 48

0 May appear only asfirst statement in a constructor

0 Theargument list determines which overloaded constructor is called.

o0 Constructors can call constructors can call constructors, and so on, but sooner or
later one of them better call super( ) or the stack will explode.

o this() and super() cannot be in the same constructor. Y ou can have one or the

other but never both.

Return Types

Inner

Overloaded methods can change return types; overridden methods cannot.

Object reference return types can accept null asa return value.

Anaray isalega return type, both to declare and return as avalue.

For methods with primitive return type, any value that can be implicitly converted to the
return type can be returned.

Nothing can be returned from a void method, but you can return nothing, by using the
return keyword on its own.

For methods with an object reference return type, a subclass of that type can be returned.
For methods with an interface return type, any implementer of that interface (or a

subinterface) can be returned.

Classes

A “regular” inner classis declared inside the curly braces of another class, but outside
any method or other code block.

An inner classis afull-fledged member of the enclosing (outer) class, so it can be
marked with an access modifier as well as the strictfp, abstract or final modifiers, but of
course never abstract and final together.

Aninner class instance shares a special relationship with an instance of the enclosing
class. This relationship gives the inner class access to all of the outer class’ members,
including those marked private.

To instantiate an inner class, you must have a reference to an instance of the outer class.
From code within the enclosing class, you can instantiate the inner class using only the
name of the inner class, as follows:

Mylnner mi = new Mylnner();

James D Bloom



Page 22 of 48

From code outside the enclosing class' instance methods, you can instantiate the inner
class only by using both the inner and outer class names, and a reference to the outer
class as follows:

MyOuter mo = new MyOuiter( );

MyOQuter.Mylnner inner = mo.new Mylnner();

From code within the inner class, the keyword this holds a reference to the inner class
instance. To reference the outer-this (in other words, the instance of the outer class that
this inner instance is tied to) precede the keyword this with the outer class name as
follows:

MyQuter.this;

Method-Local Inner Classes

A method-locd inner class is defined within a method of the enclosing class.

For the inner class to be used, you must instantiate it, and that instantiation must happen
within the same method, but after the class definition code.

A method-local inner class cannot use variables declared within the method (including
parameters) unless those variable are marked final.

The only modifiers you can apply to a method-loca inner class are strictfp, abstract and
final (Never both final and abstract at the same time).

Anonymous Inner Classes

Anonymous inner classes have no name, and their type must be either a subclass of the
named type or an implementer of the named interface.
An anonymous inner class can be recognized because it has an pair of braces containing
the class definition before the semicolon. An anonymous inner class is aways created as
part of a statement, so don’t forget to close the statement after the class definition, with a
curly brace and semicolon.
Runnable r = new Runnable( ) {

publicrun() { ...}
1
Because of polymorphism, the only method youcan call on an anonymous inner class
reference are those defined in the reference variable class (or interface).
An anonymous inner class can extend one class, or implement one interface. Unlike non

anonymous classes (inner or otherwise), an anonymous inner class cannot do both. In

James D Bloom



Page 23 of 48

other words, it cannot both extend a class and implement an interface, nor can it
implement more than one interface.

An argument-local inner class is declared, defined, and automatically instantiated as part
of a method invocation. The key to remember is that the classis being defined within a
method argument, so the syntax will end the class definition with a curly brace, followed
by a closing parenthesis to end the method call, followed by a semicolon to end the
statement: });

Static Nested Classes

Static nested classes are inner classes marked with the static modifier.

Technically, a static nested class is not an inner class, but instead considered a top- level
nested class.

Because the nested class is static, it does not share any special relationship with an
instance of the outer class. In fact, you don’t need an instance of the outer classto
instantiate a static nested class.

Instantiating a static nested class requires using both the outer and nested class names as
follows:

MyOuter.Saticlnner sn = new MyOuter.Saticlnner( );

A static inner class cannot access nonstatic members of the outer class, since it does not
have an implicit reference to any outer instance (in other words, the nested class instance

does not get an outer -this reference.

Overriding hashCode( ) and equals()

The critical methods in class Object are equals( ), finalize( ), hashCode( ), and toString( ).
equals( ), hashCode( ), and toString( ) are public and finalize( ) is protected.
Fun facts about toString( )
0 OveridetoString() so that System.out.printin() or other methods can see
something useful.
0 OverridetoString( ) to return the essence of your object’s state.
Use == to determine if two reference variables refer to the same object.
Use equals() to determine if two objects are meaningfully equivalent.
If you don’t override equals( ), your objects won't be useful hashtable / hashmap keys.

If you don't override equals( ), two different objects can’t be considered the same.

James D Bloom



Page 24 of 48

Strings and wrappers override equals( ) and make good hashtable / hashmap keys.
When overriding equals( ), use the instanceof operator to be sure you' re evaluating an
appropriate class.
When overriding equals( ), compare the object’ s significant attributes.
Highlights of the equals() contract:

0 Reflexive: x.equals(x) istrue
Symmetric: If x.equals(y) is true, then y.equals(x) must be true
Trangitive: If x.equals(y) istrue, and y.equals(z) is true, then x.equals(z) istrue
Consistent: Multiple calls to x.equals(y) will return the same result

O O O o

Null: If x is not null then x.equals(null) isfalse
If x.equals(y) istrue, then x.hashCode( ) == y.hashCode( ) must be true.
If you override equals( ), override hashCode( ); it is also good to implement the
serializable interface as HashMap and Hashtable are both themselves serializable.
Classes HashMap, Hashtable, LinkedHashMap, and LinkedHashSet use hashing.
A legal hashCode( ) override compiles and runs.
An appropriate hashCode( ) override sticks to the contract.
An efficient hashCode( ) override distributes keys randomly across a wide range of
buckets.
To reiterate: if two objects are equal, their hashcodes must be equal.
It's legal for a hashCode( ) method to return the same value for all instances, although in
practice it’s very inefficient.
Highlights of the hashCode( ) contract:
o Consistent: Multiple calls to x.hashCode( ) return the same integer.
o If x.equals(y) istrue, then x.hashCode( ) == y.hashCode( ) must be true.
o If x.equals(y) isfalse, then x.hashCode( ) == y.hashCode( ) can be either true or
false, but false will tend to create better efficiency.
transient variables aren’t appropriate for equals( ) and hashCode( ).

Collections
Common collection activities include adding objects, removing objects, verifying object
inclusion, retrieving objects, and iterating.
Three meanings for “collection”:

o collection — Respresents the data structure in which objects are stored.

James D Bloom



Page 25 of 48

o Collection —java.util.Collection is the interface from which Set and List extend.
0 Caollections— A class that holds static collection utility methods
Three basic flavours of collection include List, Set and Map:
0 List — Ordered, duplicates alowed, with an index
0 Set —May or may not be ordered and / or sorted, duplicates not allowed
0 Map—May or may not be ordered and / or sorted, uses a key, duplicate keys are
not alowed
Four basic subflavours of collections included Sorted, Unsorted, Ordered, and
Unordered.
Ordered means iterating through a collection in a specific, nonrandom order.
Sorted means iterating through a collectionin a natural sorted order.
Natural means alphabetic, numeric, or programmer-defined, which ever applies.
Key attributes of common collection classes:
0 ArrayList — Fast iteration and fast random access
o Vector —Like asomewhat slower ArrayList, mainly due to its synchronized
methods
o LinkedList — Good for adding and removing el ements from the ends (i.e. stacks
and queues) and the middle
HashSet — Assures no duplicates, provides no ordering
LinkedHashSet — No duplicates, iterates by insertion order or last accessed
TreeSet — No duplicates, iterates in natural sorted order

©O O o o

HashMap — Fastest updates (key/value pairs), allows one null key , many null

values

o Hashtable— Like a lower HashMap (as with Vector, due to its synchronized
methods). No null values or null key allowed.

o LinkedHashMap — Faster iterations, iterates by insertion order or last accessed,

allows one null key, many null values.

o TreeMap— A sorted map, in natural order

Garbage Collection

In Java, garbage collection provides some automated memory marnegement.
All objects in Java live on the heap.
The heap is also known as the garbage collectable heap.

James D Bloom



Page 26 of 48

The purpose of garbage collecting is to find and delete the objects that can’'t be reached
Only the VM decides exactly when to run the garbage collector.

Y ou (the programmer) can only recommend when to run the garbage collector.

You can't know the G.C. agorithm; maybe it uses mark and sweep, maybe it's
generational and / or iterative.

Objects must be considered eligible before they can be garbage collected.

An object is digible when no live thread can reach it.

To reach an object, alive thread must have a live reachable reference variable to that
object.

Java applications can run out of memory.

Islands of objects can be garbage collected, even through they have references,

To reiterate: garbage collection can’t be forced.

Request garbage collection with System.gc();

class Object has afinalize( ) method.

Thefinalize( ) method is guaranteed to run once and only once before the garbage
collector deletes an object.

Since the garbage collector makes no guarantees, finalize( ) may never run.

Y ou can undligibilize an object from within finalize( ).

It is not normally considered a good ides to override the finalize( ) method as it may

never run.

Creating, Instantiating, and Starting New Threads

Threads can be created by extending Thread and overriding the public void run ()
method.

Thread objects can also be created by calling the Thread constructor that takes a
Runnable argument. The Runnable object is said to be the target of the thread.

You can call start() onaThread object only once. If start() is called more than once on
aThread object, it will throw a RuntimeExpection.

The isAlive( ) method return true if start() has been called and the Thread has not yet
died.

It islegal to create many Thread objects using the same Runnable object as the target.

James D Bloom



Page 27 of 48

When a Thread object is created, it does not become a thread of execution until its start( )
method is invoked. When a Thread object exists but hasn’t been started, it isin the new

state and is not considered alive.

Transition Between Thread States

Once anew thread is started, it will always enter the runnable state.

The thread scheduler can move athread back and forth between the runnable state and
the running state.

Only one thread can be running at atime, although many threads may be in runnable
state.

There is no guarantee that the order in which threads were started determines the order in
which they’ll run.

There’ no guarantee that threads take turns in any fair way. It's up to the thread
scheduler, as determined by the particular virtual machine implementation. If you want a
guarantee that your threads will take turns regardless of the underlying VM, you should
use the sleep( ) method. This prevents one thread from hogging the running process
while another thread starves.

A running Thread may enter a blocked / waiting state by await( ), sleep( ), or join()
call.

A running Thread may enter a blocked / waiting state because it can’t acquire the lock
for a synchronized block of code.

When the sleep or wait is over, or an object’s lock becomes available, the Thread can
only reenter the runnable state.

A dead Thread cannot be started again.

Sleep, Yield and Join

Sleeping is used to delay executionfor a period of time, and no locks are released when a
Thread goesto sleep.

A dleeping thread is guaranteed to sleep for at least the time specified in the argument to
the dleep method (unless it’ s interrupted), but there is no guarantee as to when the rewly
awakened Thread will actually return to running.

The deep( ) method is a static method that sleeps the currently executing thread. One
Thread cannot tell another Thread to sleep.

James D Bloom



Page 28 of 48

The setPriority() method is used on Thread objects to give threads a priority of between
1 (low) and 10 (high), although priorities are not guaranteed, and not all VMs use a
priority range of 1-10.

If not explicitly set, athread' s priority will be the same priority as the thread that created
it (in other words, the Thread executing the code that creates the new Thread)

Theyield( ) method may cause arunning thread to back out if there are runnable threads
of the same priority. There is no guarantee that this will happen, and there is no
guarantee that when the Thread backs out there will be a different Thread selected to run.
A Thread might yield() and then immediately reenter the running state.

The closest thing to a guarantee is that at any given time, when a Thread is running it will
usually not have alower priority than any Thread in the runnable state. If alow-priority
Thread is running when a high-priority Thread enters runnable, the VM will usualy pre-
empt the running low-priority Thread and put the high-priority Thread in.

When one Thread callsthe join() method of another Thread, the currently running
Thread will wait until the Thread it joins with has completed. Think of the join()
method as saying “Hey thread, | want to join on to the end of you. Let me know when

you're done, so | can enter the runnable state.”

Concurrent Access Problems and synchronized Threads

synchronized methods prevent more than one thread from accessing an object’s critical
method code.

Y ou can use the synchronized keyword as a method modifier, or to start a synchronized
block of code.

synchronized (obyj) {

}

To synchronize a block of code (in other words, a scope smaller than the whole method),
you must specify an argument that is the object whose lock you want to synchronize on.
While only one thread can be accessing synchronized code of a particular instance,
multiple threads can still access the same object’ s unsynchronized code.

When an object goes to sleep, it takes its locks with it.

static methods can be synchronized, using the lock from the java.lang.Class instance

representing that class.

James D Bloom



Page 29 of 48

Communicating with Objects by Waiting and Notifying

Thewait( ) method lets a Thread say, “there’ s nothing for me to do here, so put mein
your waiting pool and notify me when something happens that | care about.” Basically a
wait( ) call means “wait me in your pool”, or “add me to your waiting list”
The notify( ) method is used to send a signa to one and only one of the threads that are
waiting in the same object’ s waiting pool.
The method notifyAll( ) works in the same way as notify( ), only it sends the signal to al
of the threads waiting on the object.
All three methods: wait( ), notify( ), and notifyAll( ) must be called from within a
synchronized context. A Thread invokes wait( ), notify( ) and notifyAll( ) on a particular
object, and the thread must currently hold the lock on that object.
synchronize void doSomething( ) {

while (spareResources <= 0) {

wait( );

}

spareResour ces--;

Il use resource

spareResourcest +;

notifyAll( );
}

Deadlocked Threads

Deadlocking is when thread executing grinds to a halt because the code is waiting for
locks to be removed from objects.

Deadlocking can occur when alocked object attempts to access another locked object
that is trying to access the first locked object. In other words, both threads are waiting for
each other’ s locks to be released; therefore, the locks will never be released.

Deadlocking is bad, never do it.

James D Bloom



Page 30 of 48

APPENDIX A: KEYWORDS

Access Modifiers

private— accessible only from within its own class
protected — accessible only to classes in the same package or subclasses of the class

public — accessible from any other class

Class, Method, and Variable Modifiers

abstract — declare a class that cannot be instantiated, or a method that must be
implemented by a nonabstract subclass

class — specify class

extends — indicate the superclass a subclass is extending

final —impossible to extend a class, override a method, or reinitialize avariable
implements— indicates the interfaces that a class will implement

interface — specify interface

native — indicates a method is written in a platform-dependent language

new — instantiate an object by invoking constructor

static — method or variable belongs to class (not instant)

strictfp — used in front of a method or class to indicate that floating-point numbers will
strictly follow the Java Specification for floating point calculation (i.e. only 64-bit) and
will no more accurate. strictfp therefore provides repeatability for different platforms.
synchronised — indicates a method can be accessed by only one thread atime
transient — prevents fields from being serialized, as transient fields are always skipped
when objects are serialized

volatile— used on variables that may be modified ssmultaneoudly by other threads. This
warns the compiler to fetch them fresh each time, rather than caching them in registers.
This also inhibits certain optimisations that assume no other thread will change the values
unexpectedly. Since other threads cannot see local variables, there is never any need to

mark loca variables volatile.

Flow Control

break — exits from the block of code in which it resides

case — executes a block of code, dependent on what the switch tests for

James D Bloom



Page 31 of 48

continue — stops the rest of the code following this statement from executing in aloop
and then begins the next iteration of the loop, i.e. The break statement is used to exit from
aloop or switch statement, while the continue statement is used to skip just the current
iteration and continue with the next

default — executes this block of code if none of the switch-case statements match

do — executes a block of code one time, then, in conjunction with the while statement, it
performs atest

else — executes an aternative block of codeif an if test isfalse

for — used to perform a conditional loop for a block of code

if —used to perform alogica test for true or false

instanceof — determines whether an object is an instance of a class superclass, or
interface

return — returns from a method without executing any code that follows the statement
and can optionally return a variable

switch —indicates the variable to be compared with the different case statements

while— executes a block of code repeatedly while a certain condition istrue

Error Handling

catch — declares the block of code used to handle anexception

finally — block of code, usually following a try-catch statement, which is executed no
matter what program flow occurs when dealing with an exception

throw — used to pass an exception up to the method that called this method

throws— indicates the method will pass an exception to the method that called it

try — block of code that will be tried, but may cause an exception

assert — evaluates a conditional expression to verify the programmer’s assumption,

throws AssertionError if condition “assumption” not true.

Package Control

import — statement to import packages or classes into code

package — specifies to which package all classesin a source file belong

Primitives

64-hit

James D Bloom



Page 32 of 48

0 double—a64-hit floating-point number (signed)
long — a 64-bit integer (signed)

float —a 32-hit floating-point number (signed)
int —a32-hit integer (signed)

0 char —a16-hit single Unicode character (unsigned)
0 short —a16-bit integer (signed)

0 byte—an 8-hit integer (signed)
< 8-bit
0 boolean — avaue indicating true or false
Variable Keywords

super — reference variable referring to the immediate superclass

this— reference variable referring to the current instance of an object

Void Return Type Keyword

void — indicates no return type for a method

Unused Reserved Words

const — do not used this the correct keyword in Javais static

goto — considered bad programming so not implemented in Java

James D Bloom



Page 33 of 48

APPENDIX B: QUICK SUMMARY

Primitive Variables’ Size
64-hit:
double
long
32-hit:
float
int
16-bit:
char
short
8-hit:
byte
< 8-hit:
boolean

Primitive Integer Variables’ Range
_2(bitsl) to 2(bitsl)_1

Member Visibility

private = class

default = package

protected = package + subclasses
public = all

Class Visibility
default = package
public = all

3 Types of Array Declaration

String[] days = {"“su”, “mo”};

String []days = new String [] {"“su”,”mo"};
String days[] = new String[2];

2 Main Array Exceptions

Null Pointer Exception
Arrayl ndexOutOfBoundsException

Class Definitions

Loca / method / automatic / stack variables don’t get default values so must be initialized before
use.

final reference variables must be initialized before the constructor completes.

James D Bloom



Page 34 of 48

Polymorphism does not apply to overridden static methods. An instance reference variable used
to call astatic method is converted into a class reference by the compiler and the instance
variable is not used.

abstract methods must be implemented by a subclass, so they must be inheritable. For that
reason abstract methods cannot be:

private

final.

synchronized.

native.

strictfp

but abstract classes can be strictfp.

Interfaces can have constants, which are always implicitly public, static and final; explicit
declaration of these modifiersis optional.

Interfaces can extend one or more interfaces.

Character Formats

To specify a character using its Unicode value use a backdash followed by an 8-bit octal value
“\00Q" through *\377" or by u or U followed by afour-digit hexadecimal value ‘\u0000’ (or
“\U0000’) through *\uffff’ (or \UFFFF’). The four digit hexadecimal value can be used to
specify the full range of Unicode characters.

Number Formats

octal leading zero (0127)
decimal no leading zeros (1245)
hexadecimal leading OX or Ox (OXCAFE or OXCAFE)

Numeric expressions always result in at least an int sized (32-bit) result never smaller.
Narrowing truncates high order bits (left-most bits).

Two’s Compliment

Flip the bits and add 1
Highest order bit is sign:
0=+ve
1=-ve

Shifts
Shifts can only be used on integers

>>  right shift

<<, |€ft shift
>>>  unsigned right shift (zero-filled right shift)

James D Bloom



Page 35 of 48

Division by Zero

1.2f/0 = Float.POSI TIVE_INFINITY
-2.2d/0 = Double NEGATIVE_INFINITY
0d/0 = Double.NaN

11/0 = ArithmeticException

Bitwise Non-Lazy Boolean Operators

& AND

| OR

N XOR

~ Compliment

Loops and if statements
(boolean expression) ? value if true : vaue if false

switch statements can only be evaluated by integers 32-bits or less, such as: bytes, short, char,

and int.

An else clause belongs to the innermost if statement to which it might possible belong, in other

words the closest preceding if that doesn’t have an else.

Labelled break/ continue statements

outer:
do {
if (...){
t.:.o.nti nue outer;
}
} while(...);

James D Bloom



Page 36 of 48

Exceptions
Object
4
Throwable
/ \ Checked Exception
Error Exception subject to handle or

/\ declare rule

RuntimeException

The only exception to the finally-will-always-be-caled rule is that a finally will not be invoked if
the VM shuts down. That could happen if code from the try or catch blocks call
System.exit(int);

printStackTrace( ) is a useful method provided by Throwable that prints the stack trace from
where the exception occurred.

Asserts
assert ( <boolean expression> ) ;

assert ( <boolean expression> ) : “ <message> “ ;

Classes
A class litera is formed by appending .classto the name of a primitive or reference type. It

evaluates to the class descriptor of the reference type or class descriptor of the primitive type's
wrapper class.

A subclass uses super.overiddenMethodName( ) to call an overridden superclass method whereas
an inner-class uses Outer ClassType.this.overiddenMethodName( ) to call an overridden outer-
class method.

An abstract class has a constructor (called during object creation) but an interface does not.
Overloaded methods can change return types; overridden methods cannot.

From code outside an enclosing class instance methods, you can instantiate an inner class only
by using both the inner and outer class names, and a reference to the outer class.

MyOuter mo = new MyOuiter( );
MyOuter.Mylnner mi = mo.new Mylnner();

A method-local inner class cannot use variables declared within the method (including
parameters) unless these variable are marked final.

James D Bloom



Page 37 of 48

Technically, a static nested class is not an inner class, but instead considered a top- level nested
class.

A static inner class cannot access nonstatic members of the outer class, since it does not have an
implicit reference to any outer instance.

static nested classes are declared as follows;

MyOuter.MyStaticlnner msi = new MyOuter .MySaticlnner() ;

Class Modifiers
normal class:
public
abstract
final
drictfp

inner class:
public
protected
private
static
abstract
final
srictfp

method-local inner class:
abstract
final
grictfp

Anonymous inner classes

Runnable r = new Runnable( ) {
publicvoidrun(){ ...}
b

java.lang.Object
If you don’t override equals( ) than an object won’t make a good hastable / hashmap key.

If x.equals(y) istrue, then x.hashCode( ) == y.hashCode( ) istrue.

If x.equals(y) isfalse, then x.hashCode( ) == y.hashCode( ) can be true or false, but false will
tend to create better efficiency.

If x.hashCode( ) = y.hashCode( ) istrue, then x.equlas(y) is false.
transient variables aren’t appropriate for equals( ) and hashCode( ).
Collections

java.util.Collection is an interface which Set and List extend.

James D Bloom



Page 38 of 48

java.util.Collections is aclassthat holds static collection utility methods.

Vector
Hashtable
ArrayList
LinkedList
HashSet
LinkedHashSet
TreeSet
HashMap

LinkedHashMap

TreeMap

Linked*
*Map
Tree*

* St
*Hash*
*List

synchronized ArrayList

synchronized HashMap and no null keys or values

fast iteration and fast random access

good for adding and removing elements from ends and middlie
no duplicates, no ordering

no duplicates, iterates by insertion order or last accessed

no duplicates, iterates by natural sorted order

fastest updates, one null key many null values

faster iterations, iterates by insertion order of last accessed, one null key
many null values

sorted map, in natural order

iterates by insertion order

key-value pairs, one null key, many null values
sorted, iterates in natural order

no duplicates

uses more memory for faster access

order

Garbage Collection
To reguest garbage collection use System.gc( );

Thefinlize( ) method is guaranteed to run once and only once before the garbage collection

deletes an object.

Reference Classes

SrongReference normal reference

SoftReference Used for memory sensitive caches but may stay for a while after reference
dropped

WeakReference Used for memory sensitive caches but quicker to be removed from
memory than SoftReference

PhantomReference A phantom object is one that has been finalized, but whose memory has
not yet been made available for another object.

Threads

Threads are created by using

extends Thread

James D Bloom



Page 39 of 48

or
implements Runnable
new Thread (Runnable);

Thread constructors:
Thread()
Thread(Runnable target)
Thread(Runnable target, Sring name)
Thread(String name)
Thread(ThreadGroup group, Runnable target, Sring name)
Thread(ThreadGroup group, Sring name)

Methods from java.lang.Thread class

public static void sleep(long millis) throws I nter ruptedException
public static void yield( )

public final void join()

public final void setPriority(int newPriority)

Methods from java.lang.Object class

public final void wait( )

public final void wait(long timeout)
public final void notify( )

public final void notifyAll( )

You can call start() onaThread object only once. If start() is called more than once on a
Thread object, it will throw a RuntimeException. The isAlive( ) method can test whether start( )
has been called and the Thread has not yet died. Therefore use start() as follows:

Thread t = new Thread( );

if('t.isAlive()) {
t.start();
}

The deep( ) is astatic method that will sleep the currently executing Thread. One Thread
cannot tell another Thread to sleep.

The setPriority( ) method is used on Thread objects to give Threads a priority between 1 (low)
and 10 (high), although priorities are not guaranteed, and not al JVMs use a priority range of 1-
10.

A Thread' s implicit priority is the same as its creator.

Theyield( ) method may cause a running Thread to back out if there are runnable threads of the
same priority. There is no guarantee that this will happen, and there is no guarantee that when
the Thread backs out there will be adifferent Thread selected to run. A Thread might yield()
and immediately re-enter the running state. Although, usualy, if alow-priority Thread is
running when a high-priority Thread enters runnable, the VM will pre-empt the running low
priority Thread and put the high-priority Thread in the running state.

James D Bloom



Page 40 of 48

When one Thread calls the join( ) method of another Thread the currently running Thread will
wait until the Thread if joins with has completed.

To synchronize code either use the synchronized keyword with a method or use the
synchronized(obj) {... } block.

wait() put me in wait pool until notify( ) / notifyAll()

wait(long timeout)  put mein wait pool until notify( ) / notifyAll() or timeout up
notify( ) wake up one Thread from the waiting pool

notifyAll() wake up al Threads from the waiting pool

All three methods: wait( ), notify( ), and notifyAll() must be called from within a synchronized
context.

synchronized void doSomething( ) {
while(spareResource <=0) {
wait();
}

SpareResour ces--;
I use resource
spareResourcest +;
notifyAll();

}

static methods can be synchronized, using the lock from the java.lang.Class instance
representing the class

Thread Life Cycle

wait( )

sleep(int)

blocking on 1/0

join()

blocking on synchronized block

Running

aprwdpE

A

Scheduler .
ield
selects yield()

Not Runnable

v 1.notify( ) or notifyAll( )

2.sleep() terminates
3.1/O finished

4.joined Thread dies

start()
New Thread _— Runnable

run() terminatesl

Dead

James D Bloom



Page 41 of 48

Important Methods in the String class

public char charAt (int index)

public Sring concat (String s)

public boolean equalslgnoreCase (String )

public int length( ) // be sure not to confuse with array length attribute
public String replace (char old, char new)

public Sring substring (int begin)

public Sring substring (int begin, int end) // begin isinclusive, end is exclusive (0 to length( )-1)

public Sring toLower Case( )
public Sring toSring( )
public String toUpper Case( )
public Sring tim( )

The StringBuffer class
public string toString( )

The following methods return the atered StringBuffer and alter the instance calling the method.

public synchronized SringBuffer append(String )

public synchronized StringBuffer insert(int offset, Sring s) // inserted after offset

public synchronized StringBuffer reverse( )

java.lang.Math class

public final static double Math.PI
public final static double Math.E

public static int abs(int input)
public static long abs(int long)
public static float abs(int float)
public static double abs(int double)

public static int max(int a, int b)

public static long max(long a, long b)

public static float max(float a, float b)
public static double max(double a, double b)

public static int min(int a, int b)

public static long min(long a, long b)
public static float min(float a, float b)
public static double min(double a, double b)

public static double random( ) // returns number in the range 0.0 to < 1.0

public static double ceil(double a)

public static double floor (double a)

public static int round(float a) // adds .5 then does a floor
public static long round(double a) // adds .5 then does a floor

public static double sin(double angrad)
public static double cos(double angrad)

James D Bloom



Page 42 of 48

public static double tan(double angrad)

public static double toRadian(double angdeg)
public static double toDegrees(double angdeg)

public static double sgrt(double a) // returns NaN when its argument is less than zero

NaN isn't == to anything not even itself instead use:

public boolean isNaN() in both Float and Double

Math.sgrt(Double.NEGATIVE_INFINITY) == Double.NaN

Primitive | Wrapper Class | Constructor
boolean | Boolean boolean or String
byte Byte byte or String

char Character char

double Double double or String

float Float float, double or String
int Integer int or String

long Long long or String

short Short short or String

Common Wrapper Conversion Methods
returns primitive of Wrapper

xxxValue( )

static parseXxxx(String s)

static parseXxxx(2ring s, int radix)

static valueOf(String )

static valueOf(String s, int radix)

toString()

static toString(primative)

static toString(primitive, int radix)

static toBinaryString( )
static toHexString( )
static toOctal Sring( )

returns primitive (throws Number For matException)

returns Wrapper (throws NFE)

returns String of Wrapper
returns String of primitive
returns String of primitive in radix base

returns String of primitive in binary

returns String of primitive in hexadecimal
returns String of primitive in octal

returns primitive in radix base (throws NFE)

returns Wrapper in radix base (throws NFE)

Method Boolean | Byte | Character | Double | Float | Integer | Long | Short
S = static

n = NFE

byteValue X X X X X X
doubleValue X X X X X X
floatValue X X X X X X
intValue X X X X X X
longValue X X X X X X
shortValue X X X X X X
parsexxx X X X X X X
s,n

James D Bloom




Page 43 of 48

parsexxx X X X X
s,n

(with radix)

valueOf X X X X X X X
s,n

valueOf X X X X
s,n

(with radix)

toString X X X X X X X X
toString X X X X X X
S

(primitive)

toString X X

S

(primitive, radix)

toBinaryString X X

S

toHexString X X

S

toOctalString X X

S

Practice Question Notes
signed is not a valid modifier or keyword in Java

include in not a valid keyword, but goto is

single quotes are needed around character literal numbersi.e. ‘\u0000’
You can use static and final for a method declaration

Method visibility is a compile time error not a runtime error

interface variables are by default final static

interface variables cannot be transient

interface methods cannot be static or final

Implemented interface methods must always be public because access modifiers cannot restrict
implemented methods more than their interface declaration

Widening casts happen implicitly
Constant expressionsi.e. 3-1 are alowed as a case parameter but not variable expressions

Remember to check boolean statements for single equals =

James D Bloom




Page 44 of 48

Keywords can be used as identifiers if they start with a capital letter
Be careful of while loops nested in do-while loops.
Either a catch or finally must follow atry block.

If a method does not handle an exception, the finally block is executed first before the exception
is propagated, otherwise the catch is executed first.

RuntimeException doesn’t need to be declared.

The expression after the colon : in an assert statement must be able to be implicitly converted to
asring.

It is sometimes good practice to throw an AssertionError explicitly.
Polymorphism uses the method of the instances type and not the reference variable

classA{

public void name( ) {
System.out.printin(“ A”);

}

}

class B extends A {
public void name( ) {

System.out.printin(“ B”);

}

}

Aa=newB();

a.name( ); // prints B

Remember non-private variables are passed to subclasses.
Watch out for constructors with a return type.
(long) x/y only casts x and not (x/y) therefore
(long) xly
0
((long)x)/y
substring(int beginindex, int endindex)
beginindex inclusive

endindex exclusive
from O to String.length( )-1

James D Bloom



Page 45 of 48

Don't get SringBuffer and Sring methods confused.

Two primitive values of different types but equal in value will return true when tested for
equality.

sgrt(double a) will return Doubel.NaN if a is negative.

xxxValue() returns a primitive

par seXxx(Sring) returns a primitive

valueOf(String) returns a Wrapper

java.lang.SringBuffer uses the default equals( ) and hashCode( ) methods from Object
No duplicates are allowed in a Set

Watch for the static keyword on inner-classes

abstract types can be instantiated by using an anonymous class that overrides all abstract
methods

Thread implements Runnable and so a Thread instance can be passed to the Thread constructor
The deep() methods throws InterruptedException

There are two versions of wait:
public final void wait( )
public final void wait(long timeout) // on wait queue until notify( ), notifyAll() or
/ timeout ends

Thread has three static ints:
Thread.MIN_PRIORITY
Thread. NORM_PRIORITY
Thread. MAX_PRIORITY

Octal | Hexadecimal | Binary
1 1 1
8 16 2
64 256 4
512 4096 8
4096 65536 16

The ClassLoader class and the Class class can be used to load other classes

Method-local (local) inner classes are not associated with an instance of an outer (enclosing)
class.

Valid identifiers begin with a Unicode letter, underscore character (), or dollar sign ($).
Subsequent characters consist of these characters and the digits 0-9.

The range of Char is0 to 2*°-1

James D Bloom



Page 46 of 48

null is not a Java keyword.

Remember arithmetic rules are followed for Associativity therefore *, / and % have higher
precedence than+ and — which has higher precedence than boolean operators which have
precedence in the following order &, *, |, &&, || Otherwise expressions are |eft associativei.e.
bracketed from left to right

<< left shift fills with zeros
>> right shift fills with sign bit (i.e. if negative stays negative)
>>>  right shift fills with zeros

a>>b 0 al2”
a>>>b 0 la/ 2|
a<<b ° a* 2°

A float or double value of Infinity cast to an integer is all-the-ones bit pattern

A float of double value of Negative Infinity cast to an integer is one-then-all-the- zeros bit pattern
as follows:

Integer.toBinaryString((int)Float. NEGATIVE_INFINITY)

outputs

1000 0000 0000 0000 0000 0000 0000 0000

Integer.toBinarySring((int)Float.POS TIVE_INFINITY)

outputs

111111111111 1111 1111 1111 1111 111

Java Operators, order of precedence - from highest to lowest

Priority  Operators Operation Associativity
[ ] array index
1 0 method call left
member access
2  ++ pre- or postfix increment right
pre- or postfix decrement
+ - unary plus, minus
~ bitwise NOT
! boolean (logical) NOT
(type) type cast

James D Bloom



10

11
12
13

14

new

* | %

<<
>>
>>>
< <=
> >=

i nst anceof

&

*= [= += - = Uy
<<= >>= >>>=
&= N= | =

Page 47 of 48

object creation
multiplication, division, remainder
addition, substraction

string concatenation

signed bit shift left

signed bit shift right

unsigned bit shift right

less than, less than or equal to
greater than, greater than or equal to
reference test

equal to

not equal to

bitwise AND

boolean (logical) AND
bitwise XOR

boolean (logical) XOR
bitwise OR

boolean (logical) OR

boolean (logical) AND
boolean (logical) OR
conditional

assignment

combination assignment
(operation and assignment)

left

left

left

left

left

left

|eft

|eft

left
left
right

right

James D Bloom



Page 48 of 48

References

Much of thistext was copied from Sun Certified Programmer & Developer for Java 2 by
Osborne Certification Press | SBN 0-07-222684-6.

James D Bloom



