
Page 1 of 14

James D Bloom

Reflexivity
 = X → X

Augmentation
X → Y = XZ → Y
X → Y = XZ → YZ

Transitivity
(X → Y) ∧ (Y → Z) = X → Z

Additivity
(X → Y) ∧ (X → Z) ≡ X → YZ

Projectivity
X → YZ= X → Y
X → YZ= X → Z

Pseudotransivity
(X → Y) ∧ (YZ → W) = XZ → W

Entity Integrity Rule
Any attribute that is part of a primary key can not have a NULL value.

Fully Functional Dependent
A non key attribute is fully functional dependent on the primary key if it is not
functionally dependent on any subset of the primary key.

Keys
§ A set of attributes is a candidate key iff it functionally determines all other

attributes in a relation
§ Primary Key ∈ Candidate Keys
§ Alternative Keys ⊆ Candidate Keys
§ Candidate Keys = Alternative Keys ∪ {Primary Key}
§ Primary Keys are underlined in a Relation Schema

X+

F, is the closure of X under the set of functional dependencies F and is the set of
attributes functionally determined by X under F.

FC is the irreducible cover for F:
§ F ≡ FC
§ Right-hand side of all relations only involve one attribute
§ Left-hand side of all relations is irreducible

Page 2 of 14

James D Bloom

Normalisation
§ Avoid update problems
§ Avoid redundancy
§ Simplify update operations

o Single operation for insert
o Single operation for delete

1NF
§ No composite domains
§ All values have to be atomic
§ No duplicate tuples
§ Tuples are unordered
§ Problems

o Redundancy
o Update not always single operation

2NF
§ 1NF
§ All non key attributes must be fully functionally dependent on the primary key
§ Problems

o Update problems if transitive dependencies on the primary key

3NF
§ 2NF
§ No non key attribute can have a transitive functional dependence on the

primary key

Integrity
§ Integrity constraints are constraints on the entry of data, i.e. UNIQUE,

BOUNDS, FOREIGN KEY
§ Constraints may be either deferred (satisfied only some of the time) or

immediate (has to be satisfied all the time)

Referential Integrity
§ Databases must never contain unmatched foreign key values. Suppose Table B

has a foreign key that points to Table A. Referential integrity would prevent
you from adding a record to Table B that cannot be linked to Table A.

§ Foreign keys can have NULL values

Transaction
§ Collection of operations that performs a single logical function
§ Takes a consistent database and returns a consistent database
§ A transaction is active in a history if it has neither committed or aborted

Page 3 of 14

James D Bloom

Serialisable
§ Concurrent running of a set transactions that is equivalent to some serial

running of the transactions
§ Consistency guaranteed
§ The order of operations is often represented as a directed graph (dag)
§ A concurrent execution of a set of transactions is represented by a history

(sometimes know as a schedule)
o Since some of these operations may be in parallel, a history is defined as

a partial order
o A history must specify the order of all conflicting operations

§ Operations are said to be in conflict if one or more is a write
operation

o A committed project of a history is the history of all the transactions that
have committed

Equivalence
§ View Equivalence

o Ti reads x from Tj in history H if
§ wj[x] < ri[x]
§ aj </ ri[x]
§ If there is some wk[x] such that wj[x] < wk[x] < ri[x], then ak <

ri[x]
o Final writes

§ Given a history H, we define wi[x] to be a final write for x in H if
ai ∉ H and

• for all wj[x] in H (j ≠ i) either aj ∈ H or wj[x] < wi[x]
o Two histories will be view equivalent if they have the same reads-from

relationships and the same final writes
§ Conflict Equivalence

o The serialisation graph for H is a directed graph whose nodes are the
transaction those that are committed in H and whose edges are all Ti →
Tj (i ≠ j) such that one of Ti’s operations proceeds and conflicts with one
of Tj’s operations in H

o A cycle in a serialisation graph indicates a deadlock
§ Conflict Serialisable → View Serialisable
§ View Serialisable →/ Conflict Serialisable

Page 4 of 14

James D Bloom

ACID
§ Atomicity

o A transaction can have just one of two outcomes COMMIT or ABORT
§ Consistency

o Each transaction acts on a database that is in a consistent state and leaves
the database in a consistent form

§ Isolation
o An executing Transaction cannot reveal its contents to other concurrent

transactions before (while the database may not be consistent) its
commitment

§ Durability
o Once a transaction commits, its results are permanent. The results can

only be undone by running a compensating transaction
Locks
§ To guarantee serialisability we need to ensure that a transaction should not

release a lock until it is certain that it will not request another lock, or
alternatively a transaction should not request a lock after it has released any
locks

§ Transactions go through two phases
o Growing phase

§ Locks acquired
o Shrinking phase

§ Locks released
§ Basic 2PL

o Lock can be released when the growing phase has finished
o Difficult to implement (how do you know when no more lock will be

acquired)
o Can lead to cascading aborts

§ Strict 2PL
o Locks can only be released at the end of the transaction.
o Most schedulers implement Strict 2PL

§ Granularity
o Low → high locking overhead
o High → reduce concurrency

Deadlock
§ Locking can lead to deadlock
§ Livelock: constant abortion of transaction if priority not high enough
§ Detection by timeout or wait-for-graph

o Timeouts
§ Too long - takes too long to detect
§ Too short - may undo transaction unnecessarily

§ Broken by choosing victim, which should be
o Most recently started
o Holding least locks

Page 5 of 14

James D Bloom

o Made fewest changes
o Most amount of work to finish
o Avoid cyclic restart i.e. livelock
o In the most deadlocks

§ Can be avoided
o Transactions declare all required locks, transactions then only get

scheduled if all locks are available.
§ They get restarted if extra locks are needed
§ Tendency to over declare locks to prevent restart, which reduces

concurrency
o Timestamps

§ The older the transaction the smaller the time stamp
§ Aborted transaction uses its original timestamp
§ Tj holding lock
§ Ti requesting lock
§ Wait-Die

• Requester older → requester waits
• Requester younger → requester aborts
• If ts(Ti) < ts(Tj)

o Then Ti waits
o Else Ti aborts

• Can result in cyclic restart
• Once you have a lock you never have to abort

§ Wound-Wait
• Requester older → holder aborts
• Requester younger → requester waits
• If ts(Ti) < ts(Tj)

o Then Tj aborts
o Else Ti waits

• Maximum one abortion
o Timestamp Ordering

§ Under this scheme the scheduler rejects operations that are too
late

§ Aborted transaction gets new timestamp (it is less likely to be
rejected)

§ This is different from the timestamp approach as the timestamp is
increased

§ Each data item has two timestamp values associated with it
• max-r-ts(x) denotes the largest timestamp of any transaction

that has executed r[x] successfully
• max-w-ts(x) denotes the largest timestamp of any

transaction that has executed w[x] successfully

Page 6 of 14

James D Bloom

§ The timestamp order scheme produces serialisable executions
equivalent to a serial execution in which transactions appear in
timestamp order.

§ When the scheduler receives an operation it compares the
transactions timestamp with the timestamp of the data item being
operated on

• Either the transaction’s timestamp is less than the data
item’s relevant timestamp the operation is completed and
the data item’s timestamp is updated

• Or the transaction’s timestamp is more than the data item’s
relevant timestamp and the transaction is reject

Recovery
§ Three types of failure

o Transaction failure i.e. deadlock
o System failure, where main database left in tact, but main memory and

I/O buffers lost
o Media failure, where main database becomes corrupted

§ Stable database
o Secondary storage is permanent and will never be lost

§ Normally information is only transferred to the stable database when buffers
are full, although this can be done manually

§ Both the buffers and the stable storage is divided into pages
§ The buffers area is known as the volatile database and does not survive system

crashes
§ Both undo and redo are idempotent operations as all you do is copy before or

after images and therefore can safely be done multiple times
§ Transactions that have to be undo can be spotted by the fact that they have a

start and no finish
§ Transactions that have to be redone can be spotted by the fact that they have a

start and a finish
§ In order to redo we store information about each transaction in the log
§ Information that is held in the log is

o <begin-transaction> entry
o name of the transaction
o name of the item being updated
o old value of the data item (‘before-image’)
o new value of the data item (‘after-image’)
o forward/backward pointers to the next/previous log entry for this

transaction followed by a <commit>/<abort> entry for the transaction
§ The log information would initially be held in log buffers in the main memory

before being transferred to stable storage to form the stable log
§ The log-write-ahead-protocol is to ensure we always update the stable log

before updating the associated changes
§ Recovery Procedure

Page 7 of 14

James D Bloom

o Transactions that have a <begin-transaction> without a <commit> or
<abort> have to be undone

o Transactions that have a <commit> have to be redone
o Alternatively Checkpointing can be used

§ Checkpointing
• At certain defined intervals the system takes a checkpoint

which consists of
o Forcing the contents of the log buffers to stable

storage
o Writing a <checkpoint> record to the log in stable

storage
o Forcing the contents of the database to stable storage
o Writing the address of the <checkpoint> record just

written to stable storage into a restart file
• The checkpoint record contains

o A list of all transaction active at the time of the
checkpoint

o For each such transaction the address in the log of the
most recent log record for that transaction

• Transactions will not perform updates either on buffer
blocks or on the log while the checkpointing procedure is in
progress

§ Restart Procedure
o The recovery manager obtains the address of the most recent checkpoint

record from the restart file and locates that record
o Two lists are setup

§ Undo List
• Initially contains all transactions listed in the checkpoint

record, i.e. all active transactions when the checkpoint was
performed

§ Redo List
• Initially empty

§ The restart process then searches forward through the log, starting
from the checkpoint record

• If it finds a <begin-Ti> record it adds Ti to the undo list
• If it finds a <commit-Ti> record it moves Ti from the undo

list to the redo list
o The process works backwards through the log undoing completely all

transactions in the undo list; then it works forwards from the checkpoint
redoing all transaction in the redo list

o A new checkpoint record is written to avoid loosing the work done by
the restart process

o In order to reduce the amount of material in the log various log
compressions can be used
§ Remove info on aborted transactions (these have been undone)

Page 8 of 14

James D Bloom

§ Remove before images for committed transaction (never need to
undo)

§ Keep only last after image for committed transactions
§ Consider granularity of transactions

§ Shadow Paging
o This is an alternative to log based recovery procedures
o During the lifetime of a transaction two pages tables are maintained

§ The current page table with the latest versions
§ The shadow page table with the pages prior to the start of

transactions
o When the transaction commits, the current page table is written to stable

storage and becomes the new shadow page table for the next transaction
o Under this scheme neither undo nor redo operations are required
o Problems

§ Related data is fragmented over different disks
§ Garbage collection of old shadow pages

§ Media Failure
o To recover from media failure we will need to refer to an earlier

consistent version of the database. We will therefore have to take
regular back-ups of the database; these should be held at a remove site

o In order to restore the database we will, in addition, require details of all
changes made to the database between the time of the latest back-up and
the time of the failure

o These changes are available in the log. It is therefore essential that
regular back-ups are also taken of the log and held at a remove site

o We would also require some procedure for rescheduling those
transactions that were in progress at the time of the failure.

Page 9 of 14

James D Bloom

Entity-Relationship Modelling
§ Enables the semantics of data to be captured
§ Three basic notations

o Entity sets (rectangles)
§ Set of entities that share the same set attributes
§ Also called the extension of the entity type

o Attributes (ellipses)
§ Each attribute has an associated domain
§ Types

• Simple i.e. cannot be divided
• Composite (double ellipses)
• Single-valued i.e. one entry
• Multi-valued i.e. one or more entries (double ellipses)
• Derived (dashed ellipses)
• Null i.e. not applicable or unknown

o Relationship sets (diamonds)
§ Associations between entity sets
§ Can have descriptive attributes
§ Mapping cardinality
§ Mapping constraints

• Dominant entity
o Other entities depends on its existence

• Subordinate entity (double line)
o Existence depends on another entity

• Weak entity (double diamond, double rectangle, double
line)

o Cannot be uniquely identified using own attributes
• Strong entity

o Can be uniquely identified using own attributes
• Inheritance (ISA in inverted triangle)

o Inherits all attributes
§ Weak Entity → Subordinate Entity
§ Subordinate Entity →/ Weak Entity

Page 10 of 14

James D Bloom

Relational Algebra

§ R1 UNION R2
o R1 ∪ R2

§ R1 MINUS R2
o R1 – R2

§ R1 INTERSECT R2
o R1 ∩ R2

§ R1 TIMES R2
o R1 × R1

§ DEFINE ALIAS S FOR R

§ Select (Select Row)
o R WHERE C

§ Project (Select Column)
o R[A1,A2]

§ R1 JOIN R2
o R1 >< R2

§ R1 DIVIDEDBY R1
o R1 ÷ R2

Relational Calculus

§ Variables are tuple variables: RANGE OF X is R1, R2, R3

o Calculus

§ SX.S# WHERE SX.CITY = London

o Algebra

§ (S WHERE CITY = London)[S.S#]

SQL

§ SELECT attributes (projection)

§ FROM relations (product)

§ WHERE conditions (selection)

o WHERE part may be omitted

o SQL

§ SELECT A1, …, An

§ FROM R1, …, Rm

§ WHERE C

Page 11 of 14

James D Bloom

o Algebra

§ ((R1 × … × Rm) WHERE C)[A1, …, An]

§ No operation for division

§ Use of *

o SELECT *

o FROM P

o WHERE CITY = ‘London’

§ Use of IN and NOT IN

o SELECT Sname

o FROM S

o WHERE City IN [‘London’, ’Paris’]

o SELECT Sname

o FROM S

o WHERE City NOT IN [‘Rome’, ‘Athens’]

§ Removing duplicate answers

o SELECT DISTINCT Status

o FROM S

§ Sorting

o SELECT Sname, City, Status

o FROM S

o ORDER BY Status (default ascending)

o SELECT S#, P#, Qty

o FROM SP

o ORDER BY P# ASC, Qty DESC

§ Built in aggregate functions

o COUNT

o SUM

o AVG

o MAX

o MIN

Page 12 of 14

James D Bloom

§ Built in aggregate examples

o Counts rows

§ SELECT COUNT(*)

§ FROM S

o Counts distinct rows

§ SELECT COUNT(DISTINCT S#)

§ FROM S

o Sum of all quantities on order for each part number

§ SELECT P#, SUM(Qty)

§ FROM SP

§ GROUP BY P#

§ Multiple Tables

o Get supplier names for suppliers who supply part P2

§ SELECT S.Sname

§ FROM S, SP

§ WHERE S.S# = SP.S# AND

SP.P# = ‘P2'

§ SELECT S.Sname

§ FROM S NATRUAL JOIN SP

§ WHERE SP.P# = ‘P2’

o Get part number of parts that are either stored in London or supplied by
S1 or both

§ SELECT P.P#

§ FROM P

§ WHERE P.City = ‘London’

§ UNION

§ SELECT SP.P#

§ FROM SP

§ WHERE SP.S# = ‘S1’

Page 13 of 14

James D Bloom

o Renaming

§ SELECT SP1.S#

§ FROM SP SP1, SP SP2

§ WHERE SP2.S# = S1

§ AND SP1.P# = P1

§ AND SP2.P# = P1

§ AND SP1.Qty > SP2.Qty

§ Subqueries

o SELECT S.Sname

o FROM S

o WHERE S.S# IN

• (SELECT SP.S#

• FROM SP

• WHERE SP.P# = ‘P2’)

o Joins or products can be used instead of all subqueries but in some cases
subqueries have a more ‘natural’ feel, for example those involving
EXISTS and NOT EXISTS

§ EXISTS and NOT EXISTS

o Get the supplier names of those suppliers which supply part P2

§ SELECT S.Sname

§ FROM S

§ WHERE EXISTS

o (SELECT *

o FROM SP

o WHERE S.S# = SP.S#

o AND SP.P# = ‘P2’)

o Get the suppliers names for suppliers who do not supply part P2

§ SELECT S.Sname

§ FROM S

§ WHERE NOT EXITS

o (SELECT *

o FROM SP

o WHERE S.S# = SP.S#

Page 14 of 14

James D Bloom

o AND SP.P# = ‘P2’)

§ % can be used to indicate any string of letter i.e. ‘J%mie’ ≡ ‘%ie’ ≡ ‘J%e’

§ - can be used to replace any single letter i.e. ‘J-mie’ ≡ ‘Ja--e' ≡ ‘-----‘

o Use

§ SELECT Vintage, Quality

§ FROM Wine

§ WHERE Vineyard LIKE %nay

§ SELECT Vintage, Quality

§ FROM Wine

§ WHERE Vineyard LIKE ------

Relational Algebra SQL

UNION UNION

INTERSECT INTERSECT

MINUS MINUS

JOIN NATURAL JOIN

