Page 1 of 14

Reflexivity

Y= X® X

Augmentation
X®Y ¥= XZ® Y
X®Y ¥= XZ® YZ

Trangitivity
X® Y)U(Y® 2 Y= X® Z

Additivity
X® YYUX® 2) ° X® YZ

Proj ectivity
X® YZV= X® Y
X® YZV/= X® Z

Pseudotransivity
X® Y)U(YZ® W) ¥= XZ® W

Entity Integrity Rule
Any attribute that is part of a primary key can not have aNULL value,

Fully Functional Dependent
A non key attribute is fully functional dependent on the primary key if it is not
functionally dependent on any subset of the primary key.

Keys

A set of attributes is a candidate key iff it functionally determines al other
attributes in arelation

Primary Key T Candidate Keys

Alternative Keysi Candidate Keys

Candidate Keys = Alternative Keys E { Primary Key}

Primary Keys are underlined in aRelation Schema

X"r, isthe closure of X under the set of functional dependencies F and is the set of
attributes functionally determined by X under F.

Fc istheirreducible cover for F:

FOFc
Right-hand side of all relations only involve one attribute
Left-hand side of dl relationsisirreducible

James D Bloom

Page 2 of 14
Normalisation
= Avoid update problems
= Avoid redundancy
» Smplify update operations
0 Single operation for insert
0 Single operation for delete

INF
No composite domains
All vaues have to be atomic
No duplicate tuples
Tuples are unordered
Problems
0 Redundancy
0 Update not always single operation

2NF
= INF
= All non key attributes must be fully functionally dependent on the primary key
* Problems
0 Update problemsif transitive dependencies on the primary key

= 2NF
= No non key attribute can have atransitive functional dependence on the

primary key

Integrity
» |ntegrity constraints are constraints on the entry of data, i.e. UNIQUE,
BOUNDS, FOREIGN KEY
» Congtraints may be either deferred (satisfied only some of the time) or

immediate (has to be satisfied al the time)

Referential Integrity
» Databases must never contain unmatched foreign key values. Suppose Table B
has aforeign key that pointsto Table A. Referential integrity would prevent
you from adding a record to Table B that cannot be linked to Table A.
» Foreign keys can have NULL values

Transaction
= Collection of operations that performs a single logical function
» Takes aconsistent database and returns a consistent database
= A transaction is active in a history if it has neither committed or aborted

James D Bloom

Page 3 of 14
Serialisable
= Concurrent running of a set transactions that is equivalent to some seria
running of the transactions
» Consistency guaranteed
» The order of operations is often represented as a directed graph (dag)
= A concurrent execution of a set of transactionsis represented by a history
(sometimes know as a schedule)
0 Since some of these operations may be in parallel, ahistory is defined as
apartial order
0 A history must specify the order of al conflicting operations
= QOperations are said to be in conflict if one or moreisawrite
operation
o A committed project of a history isthe history of al the transactions that
have committed

Equivalence
= View Equivalence
o Tireadsx fromTj in history H if
= wx] <r[x]
= gt X
= |If there is some w[Xx] such that wj[X] < w[X] < r[x], then g <
h[x]
o Fina writes
» Given ahistory H, we define wi[x] to be afinal write for x in H if
al Hand
foral wjx] inH (* i) either qT H or wi[X] < wi[X]
o Two histories will beview equivalent if they have the same reads-from
relationships and the same final writes
» Conflict Equivalence
0 The seriaisation graph for H is a directed graph whose nodes are the
transaction those that are committed in H and whose edges are all T; ®
T; (i* j) such that one of T;'s operations proceeds and conflicts with one
of T; soperationsin H
0 A cyclein aserialisation graph indicates a deadlock
» Conflict Serialisable ® View Seridisable
» View Seridisable ® Conflict Seriadisable

James D Bloom

Page 4 of 14
ACID
= Atomicity
0 A transaction can have just one of two outcomes COMMIT or ABORT
» Consistency
0 Each transaction acts on a database that isin a consistent state and leaves
the database in a consistent form
» |solation
0 An executing Transaction cannot reveal its contents to other concurrent
transactions before (while the database may not be consistent) its
commitment
= Durability
0 Once atransaction commits, its results are permanent. The results can
only be undone by running a compensating transaction
L ocks
» To guarantee seriaisability we need to ensure that a transaction should not
release alock until it is certain that it will not request another lock, or
aternatively a transaction should not request a lock after it has released any
locks
= Transactions go through two phases
0 Growing phase
» Locksacquired
o Shrinking phase
» Locksreleased
» Basic2PL
o Lock can be released when the growing phase has finished
o Difficult to implement (how do you know when no more lock will be
acquired)
0 Can lead to cascading aborts
= Strict 2PL
0 Lockscan only be released at the end of the transaction.
0 Most schedulersimplement Strict 2PL
= Granularity
0 Low ® high locking overhead
o High® reduce concurrency

Deadlock
» Locking can lead to deadlock
= Livelock: constant abortion of transaction if priority not high enough
= Detection by timeout or wait-for-graph
o0 Timeouts
» Toolong - takes too long to detect
= Too short - may undo transaction unnecessarily
= Broken by choosing victim, which should be
0 Most recently started
o0 Holding least locks

James D Bloom

Page5 of 14
0 Made fewest changes
0 Most amount of work to finish
o Avoid cyclic restart i.e. livelock
0 Inthe most deadlocks
Can be avoided
o Transactions declare al required locks, transactions then only get
scheduled if all locks are available.
» They get restarted if extralocks are needed
» Tendency to over declare locks to prevent restart, which reduces
concurrency
o Timestamps
The older the transaction the smaller the time stamp
Aborted transaction usesits original timestamp
T; holding lock
T, requesting lock
Wait-Die
Requester older ® requester waits
Reguester younger ® requester aborts
If tS(T)) < t(T))
o ThenT, walts
0 ElseT, aborts
Can result in cyclic restart
Once you have alock you never have to abort
» Wound-Wait
Requester older ® holder aborts
Requester younger ® requester waits
If tS(T)) < t(T))
o0 Then T, aborts
o Else T, waits
Maximum one abortion
0 Timestamp Ordering
» Under this scheme the scheduler rejects operations that are too
late
» Aborted transaction gets new timestamp (it isless likely to be
rejected)
» Thisisdifferent from the timestamp approach as the timestamp is
increased
= Each dataitem has two timestamp values associated with it
max-r-ts(x) denotes the largest timestamp of any transaction
that has executed r[x] successfully
max-w-ts(x) denotes the largest timestamp of any
transaction that has executed w[x] successfully

James D Bloom

Page 6 of 14

» The timestamp order scheme produces serialisable executions
equivalent to a serial execution in which transactions appear in
timestamp order.

» When the scheduler receives an operation it compares the
transactions timestamp with the timestamp of the dataitem being
operated on

- Either the transaction’ s timestamp is less than the data
item’ s relevant timestamp the operation is completed and
the data item’ s timestamp is updated
Or the transaction's timestamp is more than the data item’s
relevant timestamp and the transaction is reject

Recovery
» Threetypes of failure
o Transaction failurei.e. deadlock
0 System failure, where main database left in tact, but main memory and
|/O buffers lost
0 Mediafailure, where main database becomes corrupted
= Stable database
0 Secondary storage is permanent and will never be lost
= Normally information is only transferred to the stable database when buffers
are full, although this can be done manually
= Both the buffers and the stable storage is divided into pages
» The buffers areais known as the volatile database and does not survive system
crashes
= Both undo and redo are idempotent operations as al you do is copy before or
after images and therefore can safely be done multiple times
» Transactions that have to be undo can be spotted by the fact that they have a
start and no finish
» Transactions that have to be redone can be spotted by the fact that they have a
start and afinish
* |norder to redo we store information about each transaction in the log
» [nformation that isheld inthelog is
0 <begin-transaction> entry
name of the transaction
name of the item being updated
old vaue of the dataitem (‘ before-image’)
new value of the data item (‘ after-image’)
forward/backward pointers to the next/previous log entry for this
transaction followed by a <commit>/<abort> entry for the transaction
» Thelog information would initialy be held in log buffers in the main memory
before being transferred to stable storage to form the stable log
» Thelog-write-ahead-protocol isto ensure we aways update the stable log
before updating the associated changes
= Recovery Procedure

O O0OO0OO0Oo

James D Bloom

Page 7 of 14

o Transactions that have a <begin-transaction> without a <commit> or
<abort> have to be undone
o Transactions that have a <commit> have to be redone
o Alternatively Checkpointing can be used
= Checkpointing
At certain defined intervals the system takes a checkpoint
which consists of

o

0]

0)
0]

Forcing the contents of the log buffersto stable
storage

Writing a <checkpoint> record to the log in stable
storage

Forcing the contents of the database to stable storage
Writing the address of the <checkpoint> record just
written to stable storage into arestart file

The checkpoint record contains
o A list of dl transaction active at the time of the

checkpoint

0 For each such transaction the address in the log of the

most recent log record for that transaction

Transactions will not perform updates either on buffer
blocks or on the log while the checkpointing procedureisin
progress

= Restart Procedure

0 The recovery manager obtains the address of the most recent checkpoint
record from the restart file and locates that record

o Two listsare setup

= Undo List

Initially contains all transactions listed in the checkpoint
record, i.e. al active transactions when the checkpoint was
performed

= RedolList

Initially empty
» Therestart process then searches forward through the log, starting
from the checkpoint record
If it finds a <begin-T;> record it adds T; to the undo list
If it finds a <commit-T;> record it moves T; from the undo
list to the redo list
0 The process works backwards through the log undoing completely all
transactions in the undo list; then it works forwards from the checkpoint
redoing al transaction in the redo list
0 A new checkpoint record is written to avoid loosing the work done by

the restart process

0 Inorder to reduce the amount of materia in the log various log
compressions can be used
= Remove info on aborted transactions (these have been undone)

James D Bloom

Page 8 of 14
» Remove before images for committed transaction (never need to
undo)
= Keep only last after image for committed transactions
» Consder granularity of transactions
= Shadow Paging
o Thisisan aternative to log based recovery procedures
o During the lifetime of atransaction two pages tables are maintained
» The current page table with the latest versions
» The shadow page table with the pages prior to the start of
transactions
0 When the transaction commits, the current page table is written to stable
storage and becomes the new shadow page table for the next transaction
0 Under this scheme neither undo nor redo operations are required
o Problems
» Related data is fragmented over different disks
» Garbage collection of old shadow pages
» MediaFailure
0 Torecover from mediafailure we will need to refer to an earlier
consistent version of the database. We will therefore have to take
regular back-ups of the database; these should be held at aremove site
0 In order to restore the database we will, in addition, require details of all
changes made to the database between the time of the latest back-up and
the time of the failure
0 Thesechanges are availableinthelog. It istherefore essential that
regular back-ups are also taken of the log and held at aremove site
o We would aso require some procedure for rescheduling those
transactions that were in progress at the time of the failure.

James D Bloom

Page 9 of 14
Entity-Relationship Modelling
= Enablesthe semantics of datato be captured
» Three basic notations
0 Entity sets (rectangles)
= Set of entities that share the same set attributes
» Also called the extension of the entity type
o Attributes (ellipses)
» Each attribute has an associated domain
= Types
- Simplei.e. cannot be divided
Composite (double ellipses)
Single-valued i.e. one entry
Multi-valued i.e. one or more entries (double ellipses)
Derived (dashed ellipses)
Null i.e. not applicable or unknown
0 Relati onshl p sets (diamonds)
» Associations between entity sets
» Can have descriptive attributes
. Mappi ng cardinality
= M appl ng constraints
Dominant entity
0 Other entities depends on its existence
Subordinate entity (double line)
0 Existence depends on another entity
Weak entity (double diamond, double rectangle, double
line)

o Cannot be uniquely identified using own attributes

Strong entity
0 Can be uniquely identified using own attributes
Inheritance (ISA in inverted triangle)
o0 Inheritsall attributes
» Wesk Entity ® Subordinate Entity
» Subordinate Entity ® Weak Entity

James D Bloom

Page 10of 14
Relational Algebra

= R1UNION R2
o0 R1IE R2

R1 MINUSR2
0 R1-R2

= R1INTERSECT R2
0 RICR2

= RITIMESR2
o R1" R1

= DEFINEALIASSFORR

= Sdlect (Select Row)
o RWHEREC

* Project (Select Column)
o R[A1AZ]

= R1JOIN R2
0 Rls<«R2

= R1DIVIDEDBY R1
o Rl, R2

Relational Calculus
» Vaiablesaretuple variables: RANGE OF X isR1, R2, R3
o Caculus
= SX.S#WHERE SX.CITY = London
o Algebra
» (SWHERE CITY = London)[S.S#]

SQL
» SELECT attributes (projection)
* FROM relations (product)
» WHERE conditions (selection)
o WHERE part may be omitted
o SQL
= SELECT A1, ...,An
» FROM R1, ...,Rm
= WHERE C

James D Bloom

Page 110of 14

0 Algebra
* (R1” ...” Rm)WHERE C)[AL, ..., An]
* No operation for divison
» Useof *
o SELECT *
o FROM P

o WHERE CITY =‘London’
= Useof IN and NOT IN
o SELECT Shame
o FROM S
o WHERE City IN ['London’, 'Paris']

o SELECT Shame

o FROM S

o WHERE City NOT IN ['Rome’, ‘Athens']
» Removing duplicate answers

o SELECT DISTINCT Status

o FROM S

= Sorting
o SELECT Sname, City, Status
o FROM S

o0 ORDERBY Status (default ascending)

o SELECT SH, PH#, Qty
o FROM SP
o ORDERBY P#ASC, Qty DESC
= Built in aggregate functions
o COUNT
SUM
AVG
MAX
MIN

©O O O o

James D Bloom

Page 12 of 14

Built in aggregate examples
o Countsrows
= SELECT COUNT(*)
= FROM S
o Countsdistinct rows
» SELECT COUNT(DISTINCT SH)

= FROM S

o Sum of al quantities on order for each part number
= SELECT P#, SUM(Qty)
* FROM SP
» GROUPBY P#

Multiple Tables

0 Get supplier names for suppliers who supply part P2
= SELECT SSname
» FROM S SP
= WHERE S.S#=SP.S#AND

SP.P#="P2

= SELECT SSname
= FROM SNATRUAL JOIN SP
» WHERE SP.P#=‘P2

0 Get part number of partsthat are either stored in London or supplied by

S1 or both

= SELECT P.P#
* FROM P
» WHERE P.City =*‘London’
= UNION
» SELECT SP.P#
* FROM SP
= WHERE SP.S#='SI

James D Bloom

Page 130f 14

0 Renaming
= SELECT SP1.S#
= FROM SP SP1,SP SP2
= WHERE SP2.S#=S1
= AND SP1.P#=P1
= AND SP2.P#=P1
= AND SP1.Qty > SP2.Qty
Subqueries
o SELECT SSname
o FROM S
o WHERE SS#IN

(SELECT SP.S#
FROM SP
WHERE SP.P#='P2)

Joins or products can be used instead of al subqueries but in some cases
subqueries have amore ‘natural’ feel, for example those involving
EXISTS and NOT EXISTS

EXISTS and NOT EXISTS
0 Get the supplier names of those suppliers which supply part P2

SELECT
FROM
WHERE

o O O

0]

S.Sname

S

EXISTS

(SELECT *

FROM SP

WHERE S.S#=SP.S#
AND SP.P#="P2')

0 Get the suppliers names for suppliers who do not supply part P2
SELECT S.Sname

FROM
WHERE

o
o
o

S

NOT EXITS
(SELECT *
FROM SP

WHERE S.S#=SP.S#

James D Bloom

Page 14 of 14
o AND SP.P#="P2)

= 0% can be used to indicate any string of letter i.e. *Jomie © ‘%ie © ‘e

= - can be used to replace any single letter i.e. ‘Jmie © ‘Ja-€'° °

0 Use
» SELECT Vintage, Qudlity
* FROM Wine
» WHERE Vineyard LIKE %nay
» SELECT Vintage, Qudlity
* FROM Wine
» WHERE Vineyard LIKE ------
Relational Algebra SQL
UNION UNION
INTERSECT INTERSECT
MINUS MINUS
JOIN NATURAL JOIN

James D Bloom

