

Page 1 of 28 James D Bloom

I/O Streams

#include <iostream>

using namespace std;

or

#include <iostream.h>

State-of-Stream Member Functions

§ good() - Returns true if stream is ok

§ eof() - Returns true if end-of-file hit

§ fail() - Returns true if error has occurred.

 In Boolean expressions cin or

 cout can be used on it’s own

 to test for an error occurring.

§ bad() - Returns true if fatal error has

 occurred

§ rdstate() - Returns current flags

§ clear() - Clears all flags

Page 2 of 28 James D Bloom

Stream Input

§ getline(string, length) - Member function, reads length – 1

 characters into string.

§ >> - Manipulator, reads up to first

 space or return, used with cin

§ << - Manipulator, prints out string, used

 with cout

I/O Stream Manipulators

§ endl - Outputs ‘\n’ and flushes the output buffer

§ ends - Outputs ‘\0’

§ flush - Flushes output buffer

I/O Stream Format Flag Member Functions

§ setf(flags) - Sets flags as additional format flags

 and returns previous flags, multiple flags

 are separated by |

§ unsetf(flags) - Clears flags

§ flags() - Return all set format flags

§ flags(flags) - Sets flags as the new format flags and

 returns the previous flags

Page 3 of 28 James D Bloom

I/O Stream Format Flags

Flags

boolalpha

uppercase

showpos

showpoint

fixed
scientific

showbase

hex
oct
dec

Manipulators

setiosflags(flags)

setw(int)
†

left †
right

†

boolalpha
noboolalpha

uppercase
nouppercase

showpos
noshowpos

showpoint
noshowpoint

fixed
scientific

setprecision(int)

showbase
noshowbase

Member Functions

setf(flags)

width(int)
†

precision(int)

† This requires #include <iomanip> or #include <iomanip.h>

Page 4 of 28 James D Bloom

File Streams

#include <fstream>

using namespace std;

or

#include <fstream.h>

Creating File Stream Objects

 ifstream in_stream;

 ofstream out_stream;

File Stream Member Functions

§ open(name) - Opens stream’s file (default mode)

§ close() - Closes stream’s file

§ is_open() - Returns whether the file is opened

§ get(character) - Read single character

§ put(character) - Write single character

§ putback(character) - Doesn’t alter file but the program acts

 as if the file had been altered

 open(name, flags):

 flags:

 in - Reads (file must exist)

 out - Empties (or creates) and writes

 out | app - Appends (creates if necessary)

 in | out - Reads and writes (file must exist)

 in | out | trunk - Empties, (or creates) reads and writes

Page 5 of 28 James D Bloom

Maths Functions

#include <cmath>

#include <cstlib>

using namespace std;

or

#include <ctype.h>

#include <stdlib.h>

§ abs(x) - Returns magnitude of x

§ floor(x) - Returns floating point value equal to

 smallest integer that represents x

§ ceil(x) - Returns floating point value equal to

 largest integer that represents x

§ pow(x, y) - Returns xy, x and y are doubles

§ sqrt(x) - Returns x

§ atoi(string) - Returns integer equal to string

Page 6 of 28 James D Bloom

Switch Statements

switch (expression)

{

 case value1: statements 1

 …

 break;

 …

 …

 …

 case valueN: statements N

 …

 break;

default: statements default

}

Enumerations & Type Definitions

• enum New_Type_Name {value1 = 0, value2, value3, … };

• typedef Known_Type_Definition New_Type_Definition;

If-Then-Else Shorthand

If w = x then y else z: (w == x) ? y : z

Page 7 of 28 James D Bloom

Array Declaration

 Single Dimension:

 Type Array_Name[Size];

 i.e. int bigArray[100];

 Multi Dimension:

 Type Array_Name[SizeD1][SizeD2]…[SizeDN];

 i.e. char page[30][100];

 Dynamic:

 Type* Array_Pointer_Name ;

 Array_Pointer_Name = new Type[Size]

 i.e. int *number_ptr;

 number_ptr = new int[10];

 Multidimensional Dynamic:

 Type** Array_Pointer_Name;

 Array_Pointer_Name = new Type*[SizeD1];

 for(int i = 0 ; i < SizeD1 ; i++)

 Array_Pointer_Name = new Type[SizeD2];

Page 8 of 28 James D Bloom

Array Parameters

 Single Dimension:

 Type_Returned Function_Name(Type Array_Name[])

 i.e. int sumArray(int bigArray[])

 Multi Dimension:

 Type_Returned Function_Name(Type Array_Name[][SizeD2])

 i.e. int sumArray(int bigArray[][100])

 Dynamic:

 Type_Returned Function_Name(Type Array_Name[])

 i.e. int sumArray(int bigArray[])

 or

 Type_Returned Function_Name(Type* Array_Name)

 i.e. int sumArray(int* bigArray)

 Multidimensional Dynamic:

 Type_Returned Function_Name(Type Array_Name[][SizeD2])

 i.e. int sumArray(int bigArray[][100])

 or

 Type_Returned Function_Name(Type** Array_Name)

 i.e. int sumArray(int** bigArray)

To prevent arrays being altered by functions use const

i.e. int sumArray(const int bigArray[])

Page 9 of 28 James D Bloom

Array Arguments

 Calling functions array arguments are passed without their size,

even for multidimensional arrays.

 i.e. cout << sumArray(bigArray);

Deleting Arrays

 Dynamic:

 delete []Array_Pointer_Name

 i.e. delete []number_ptr;

 Multidimensional Dynamic:

 for(int i = 0 ; i < SizeD1 ; i++)

 delete []Array_Pointer_Name[i];

 delete []Array_Pointer_Name;

MAX INDEX = (DECLARED SIZE – 1)

Page 10 of 28 James D Bloom

Vectors

#include <vector>

using namespace std;

or

#include <vector.h>

 Creating Vectors

 vector<Type> Name - Creates vector of type

 Type and name Name

 vector<Type> Name(OtherVector) - Creates vector which is

 copy of OtherVector

 vector<Type> Name(n) - Creates vector which

 has n elements

 e.g. (functions and iterators explained below)

 vector<int> myVector;

 …

 list<int>::iterator myIterator;

 for (myIterator = myVector.begin() ;

 myIterator != myVector.end() ; myIterator ++) {

 cout << *myIterator << “, “; // Prints out numbers in vector

 }

Vector is a template

Page 11 of 28 James D Bloom

 Vector Functions

 vector1.swap(vector2)

 or

 swap(vector1, vector2) - Swap data

 vector[index]

 or

 vector.at(index) - Returns element at index

 vector.front() - Returns first element

 vector.back() - Returns last element

 vector. insert(iteratorpos, n, elem) - Inserts n copies of elem

 at iterator position

 iteratorpos

 vector.push_back(elem) - Appends a copy of elem

 at the end

 vector.pop_back(elem) - Removes last element

 and returns nothing

 vector.erase(iteratorpos) - Removes element at

 iterator position

 iteratorpos

 vector.erase(beg, end) - Removes element in

 range beg to end

 vector.clear() - Removes all elements

 ==, !=, <, <=, >, >= - Can be used for vector

 comparisons

 †stable_sort(iteratrpos1, iteratrpos2)- Sorts elements between

 two iterator positions

† This requires #include <algorithm> or #include <algo.h>

Page 12 of 28 James D Bloom

Iterators

 Creating Vector Iterators

 vector<type>::iterator iteratorName;

Iterator Functions

 vector.begin() - Returns random access

 iterator for first element

 vector.end() - Returns random access

 iterator for last element

 vector.rbegin() - Returns reverse iterator

 for first element

 vector.rend() - Returns reverse iterator

 for last element

 iteratorName* - Returns element at

 iterator position

 iteratorName++ - Steps iterator one

 position forward

 iteratorName-- - Steps iterator one

 position backwards

 iterator1Name == iterator2Name - Compares the position of

 two iterators (also !=)

 iterator1Name = iterator2Name - Assigns the position of

 one iterators to another

 iterator

Page 13 of 28 James D Bloom

String Functions

#include <cctype>
using namespace std;

or

#include <ctype.h>

 Character Functions
§ isalpha(character) - True if character is an upper or lower

 case letter (‘a’ to ‘z’ or ‘A’ to ‘Z’)
§ toupper(character) - Returns uppercase of character

#include <cstring>

using namespace std;

or

#include <string.h>

 String Functions
§ strcpy(string1, string2) - True if character is an

 upper or lower case
 letter (‘a’ to ‘z’ or ‘A’ to ‘Z’)

§ strlen(string) - Returns string length
 excluding ‘\0’

§ strcat(strDestination, strSource) - Copies strings behaviour
 undefined for overflow.

§ strcmp(string1, string2) - <0 for string1 < string2
 0 for string1 = string2
 >0 for string1 > string2

§ strstr(strToSearch, strToSchFor) - Returns a pointer to the
 first occurrence of
 strToSearchFor in
 strToSearch, or NULL if
 strToSearchFor does not
 appear in string.

Page 14 of 28 James D Bloom

Pointers & References

A reference declaration:

 int i = 3;

 int &ri = i;

Reference to a constant:

 const int &ri = i;

 is equivalent to

 int const &ri = i;

All references are constant therefore they always need to be initialised

when they are defined.

A pointer declaration:

 int i = 3;

 int *pi = &i;

Pointer to a constant:

 const int *pi = i;

 is equivalent to

 int const *pi = i;

Constant pointer:

 int *const pi = i;

Constant pointers also have to be initialised as the memory address

pointed to can not be changed.

Page 15 of 28 James D Bloom

Quick Sort

 // Sorts elements in list from list[first] to list[last] into alphabetical order

 void quickSort(char list[], int first , int last)

 {

 int left = first; // Left sorting position (left arrow)

 int right = last; // Right sorting position (right arrow)

 int pivot = list[(left + right)/2];

 do {

 while (list[right] > pivot)

 right--;

 while (list[left] < pivot)

 left++;

 if (left <= right)

 swap(list[left++], list[right--]);

 } while (right >= left);

 if (first < right)

 quickSort(list, first , right);

 if (left < last)

 quickSort(list, left, last);

 }

 // Swap the values of two parameters

 void swap(char& first, char& second)

 {

 char temp = first;

 first = second;

 second = temp;

 }

Page 16 of 28 James D Bloom

Binary Search

// Search for element between list[first] and list[last] with value value

int binarySearch(char value, char list[], int first, int last)

{
 int midPoint = (first + last)/2;;

 if (first > last)
 return -1;

 else {

 if (list[midPoint] == value)

 return midPoint;

 else if (list[midPoint] > value)

 return binarySearch(value, list, first, midPoint - 1);
 else

 return binarySearch(value, list, midPoint + 1, last);

 }
}

Reverse Character Array

// Copies str1 into str2 backwards

void reverse(const char str1[], char str2[])

{

 int length = strlen(str1); // length of str1
 int str1Pos = 0; // Position in str1

 int str2Pos = 0; // Position in str2

 for(str2Pos = length-1 ; str1[str1Pos] ; str1Pos++){

 str2[str2Pos] = str1[str1Pos];

 str2Pos--;

 }

 str2[length] = '\0';

}

Page 17 of 28 James D Bloom

Sub-String

// Returns 1 if subStr is a sub-string of string, 0 otherwise

int subString(const char subStr[], const char string[])

{

 if(*string == '\0')

 return 0;

 else if(prefix(subStr, string))

 return 1;

 else

 return subString(subStr, string+1);

}

// Returns 1 if prefix is a prefix of string, 0 otherwise

int prefix(const char strPrefix[], const char string[])

{

 if(*strPrefix == '\0') {

 return 1;

 } else if(*strPrefix != *string)

 return 0;

 else

 return prefix(strPrefix+1, string+1);

}

Page 18 of 28 James D Bloom

Copy Alphabetic Characters

// Copies alphabetic characters from string to alphaString

void alphaCopy(const char string[], char alphaString[])

{

 int stringPos = 0; // String position

 int alphaStringPos = 0; // alphaString position

 while(string[stringPos]) {

 if(isalpha(string[stringPos])) {

 alphaString[alphaStringPos] = string[stringPos];

 alphaStringPos++;

 }

 stringPos++;

 }

 alphaString[alphaStringPos] = '\0';

}

Page 19 of 28 James D Bloom

GNU
• Command Line

g++ filename.cpp -o executablename

• Single File (makefile)

executablename: filename.cpp

 g++ -Wall -g filename.cpp -o executablename

• Multiple Files (makefile)

executablename: objectOneName.o objectTwoName.o

 g++ -Wall -g objectOneName.o objectTwoName.o -o executablename

objectOneName.o: fileOneName.cpp fileOneName.h

 g++ -Wall -g -c fileOneName.cpp

objectTwoName.o: fileTwoName.cpp fileTwoName.h

 g++ -Wall -g -c fileTwoName.cpp

clean:

 rm - f *.o executablename

[TAB]

Page 20 of 28 James D Bloom

GDB

• r - Continue / resume execution

• c - Continue / resume execution

• s - Step until next line (will step into functions)

• n - Continue until next line (steps over functions)

• finish - Continue current function returns

• info break - List breakpoints

• delete n - Delete breakpoint number n

• watch - Set watch point, argument is an expression;

 debugger will stop execution when changes.

• print variable - Display current value of variable

• where - Shows stack trace

• up - Move to a higher stack frame

• down - Move to lower stack frame

• quit - Quits the debugger

Page 21 of 28 James D Bloom

Object Oriented

Good programmers a lways:

§ Use const when ever possible, for methods & variables.

§ Initialise all member variables in constructor’s initialiser.

§ Have minimum visibility for any member variables or

functions.

§ Echo back input data

§ Use defensive programming

§ Use Top Down Design

§ Split up program into simple easy tasks

§ There should be no set of three consecutive lines or

more that is repeated anywhere in a program.

§ Comment as you go along to keep track of what you are

doing & avoid errors.

§ Declare a copy constructor, an assignment operator and an

=operator for classes with dynamically allocated memory, to

avoid memory problems such as memory leaks or double

deletion of dynamic memory.

§ Prefer initialization to assignment in constructors, particularly

when using templates as the type may be const.

§ List members in an initialization list in the order in which they

are declared, as this is the order in which they are initialized.

Page 22 of 28 James D Bloom

Static variable initialisers require a type:

float Class_Name::Static_Variable = 10.1;

When creating an object using the default constructor DO NOT use

empty brackets:

Class_Name Object_Instance;

Default values for parameters are only added to the function

signature.

Copy constructors called implicitly by the compiler when ever an

objects is used as pass-by-value parameters or the return type of a

function. To avoid this pointers or references can be used. The copy

constructor, the =operator, and the destructor are called the big three

because experts say if you need any of them you need all three. If any

of these is missing, the compiler will create it but it may not behave as

you want. The copy constructor and the overloaded =operator that the

compiler generates for you will work fine if all member variables are of

predefined types such as int and double, but it may misbehave on

classes that have class member variables. For any class that uses

pointers and the new operator, it is safest to define your own copy

constructor, overloaded =, and a destructor. When an object is copied

using a copy constructor generated by the compiler the memory

address of pointers are copied and NOT the value in the memory

pointed to by the pointers. This can result in an objects dynamically

Default constructor used

Page 23 of 28 James D Bloom

allocated memory being deleted when a copy of the original object’s

destructor is called.

If you declare a constant object you make all member variables const

and remove non-const member functions from the object.

The base class of a derived class may be specified to be public,

protected or private. The base class access specifier affects the

extent to which the derived class may inherit from the derived class.

 class Goldfish : public Animal {

 ...

 };

Virtual Functions & Pointers

• Derived classes may only override virtual functions, but may overload

any function.

• Non-virtual functions are bound statically

• Virtual functions may be bound dynamically. All other functions are

bound statically.

• Virtual functions are bound according to the class of the object

executing the function

• When a virtual function is called by a pointer, then the function is

bound according to the class of the object pointed at by the pointer,

and NOT according to the type of the pointer.

• Static binding results in faster programs. Dynamic binding allows for

flexibility at run-time. Therefore programmers should only use

dynamic binding only when absolutely necessary.

Page 24 of 28 James D Bloom

A constructor for a sub class (derived class) always calls the default

constructor for its super class (base class). If a base class has a

constructor then that constructor should be called through a base class

initialiser, which executes the base class constructor before the body of

the derived class constructor. Otherwise base class initialisers are

implicitly introduced by the compiler, but the compiler always calls a

default class initialiser (constructor).

You can only copy a derived class to a base class, and not the other

way around.

Base_Class_Instance = Derived_Class_Instance

Derived_Class_Instance = Base_Class_Instance

Pointers to a derived class may be implicitly converted to pointers of a

based class, and not the other way around. Derived class objects may

appear wherever base class objects are expected i.e. derived classes

can replace base classes.

Virtual functions may have different implementations in the derived

classes. The keyword virtual indicates that a function is virtual. The

virtual keyword is only added to the function signature.

A virtual function may have no implementation. If so it only serves to

define an interface provided by all derived classes. This type of virtual

function is called a pure virtual function and is indicated by adding =0

before the ; in the function signature.

virtual void draw() = 0 ;

Virtual Destructors should always be used when using dynamic

binding. Non virtual destructors are always called using the static type

Page 25 of 28 James D Bloom

and NOT the dynamic type. This means that a derived class’s

destructors might not be called. If virtual destructors are used the

destructor is called according to the dynamic type.

Overloaded Operators

Overloaded operators are of two types, global and local. Both types

are used identically.

Binary operators may be defined through global operators with two

arguments, or through member (local) functions with one argument .

Unary (prefix) operators may be defined through global operators

with one argument, or through member (local) functions without any

arguments.

Overloaded operator functions can only be defined to accept an

argument of a class or enumeration type. A pointer doesn’t count.

friend Class_Name &operator++(Class_Name &obj_name)

or

Class_Name &operator++()

The << operator should always be overloaded globally:

friend ostream& operator<<(ostream& o, Class_Name obj_name)

Constant Methods

Labelling a method as being const means that it will not change any of

the data members within the object. If a method is declared constant it

can not change any variable values, therefore data members can never

Page 26 of 28 James D Bloom

be l-values. A constant method is indicated by adding the const

keyword before the ; in the function signature and between the) and {

in the function definition.

friend ostream& operator<<(ostream& o , Class_Name obj_name) const {

 return ostream << obj_name.string_variable1;

}

Function Templates

The function definition and the function prototype (signature) for a

function template are each prefaced with the following:

 template<class Type_Parameter>

The prototype and definition are then the same as any ordinary

function prototype and definition, except that the Type_Parameter can

be used in place of a type.

 template<class T>

 void show_stuff(int stuff1, T stuff2, T stuff3);

 The definition for this function template might be:

 template<class T>

 void show_stuff(int stuff1, T stuff2, T stuff3){

 cout << stuff1 << endl

 << stuff2 << endl

 << stuff3 << endl;

 }

Page 27 of 28 James D Bloom

The function template given in this example is equivalent to having one

function prototype and one function definition for each possible type

name. The type name is substituted for the type parameter. For

instance, consider the following function call:

 show_stuff(2, 3.3, 4.4);

When this function call is executed, the compiler uses the function

definition obtained by replacing T with the type name double . A

separate definition will be produced for each different type for which

you use the template, but not for any types you do not use. Only one

definition is generated for a specific type regardless of the number of

times you use the template.

Class Templates Syntax

The class definition and the definitions of the member functions are

prefaced with the following:

 template<class Type_Parameter>

The class and member function definitions are then the same as any

ordinary class, except that the Type_Parameter can be used in place of

a type.

 template<class T>

 class Pair {

 public:

 Pair();

 Pair(T first_value, T second_value);

 …

 };

Page 28 of 28 James D Bloom

Member functions and overloaded operators are then defined as

function templates.

 template<class T>

 Pair<T>::Pair(T first_value, T second_value) {

 …

 }

Using Templates

You can specialize (use) a class template by giving a type argument to

the class name:

 Pair<int>

The specialized class name can then be used just like any class name.

It can be used to declare objects or to specify the type of a formal

parameter.

 Pair<int> pair_instance1, pair_instance2;

