

Imperial College of Science,

Technology and Medicine

(University of London)

Department of Computing

The RJCE System for

Dynamically Changing Object Methods
By

James D Bloom

Submitted in partial fulfilment of the requirements for the MSc

Degree in Computing Science of the University of London and for the

Diploma of Imperial College of Science, Technology and Medicine.

September 2003

Abstract

The purpose of the Runtime Java Class Editor (RJCE) project was to enable a program

to be altered at runtime. This is a revolutionary, new approach to developing,

debugging or learning Java. Several approaches were investigated including byte code

alteration and class loading. The chosen approach was to combine the use of

interpreters and parsers. Through this, the speed of compiled code is combined with the

flexibility of interpreted code. A powerful Integrated Development Environment was

implemented that can be embedded into any application in only two lines of code. This

allows not only source code editing but also provides a class browser, which can be

used to introspect on variables, methods, inner-classes, interfaces and super-classes.

The project achieved its purpose – as confirmed by various test. The potential of the

RJCE system is demonstrated by over 500 downloads within the first week of being

released as an open source project1.

1 http://class-editor.sourceforge.net

Acknowledgments

I would like to thank my supervisor Simon Colton, for his enthusiasm, interest and

encouragement. I would also like to thank both Terence Parr and Pat Niemeyer,

because without their products ANLTR and BeanShell, this project would not have been

possible.

Table of Contents

1. INTRODUCTION.. 7

1.1 MOTIVATION.. 7
1.2 REPORT STRUCTURE .. 9

2. BACKGROUND .. 10

2.1 COMPILED LANGUAGES ... 11
2.1.1 Machine Code ... 11
2.1.2 Assembly Language... 12
2.1.3 FORTRAN ... 13
2.1.4 Modern Compilers .. 15

2.2 INTERPRETED LANGUAGES .. 17
2.2.1 Compilation - Interpretation... 17

2.3 JAVA... 18
2.3.1 History ... 18
2.3.2 The Java Virtual Machine... 19
2.3.3 Compiled or Interpreted?.. 19
2.3.4 References and Garbage Collection... 20
2.3.5 Reflection... 21
2.3.6 Altering Running Code.. 22
2.3.7 Debugging ... 27

2.4 JAVA SOURCE CODE INTERPRETERS.. 28
2.4.1 BeanShell... 28
2.4.2 DynamicJava... 30

2.5 HUMAN COMPUTER INTERACTION... 31
2.5.1 Graphical Source Editors ... 31
2.5.2 Browsers.. 32

2.6 REGULAR EXPRESSIONS... 33
2.7 PARSER GENERATORS.. 35

2.7.1 Lexers & Regular Expressions ... 35
2.7.2 Token Delimiters and Lookahead... 36
2.7.3 Finite Automatas ... 37
2.7.4 Token Parsers and their Grammars ... 37
2.7.5 Top-down Parsers ... 39
2.7.6 LL(k) Parsers... 40

2.7.7 Bottom-up & LR(k) Parsers .. 40
2.7.8 ANLTR and JavaCC.. 41
2.7.9 Parse Trees.. 41

2.8 XML .. 42
2.8.1 History ... 42
2.8.2 Reading and Writing XML.. 46
2.8.3 SAX .. 46
2.8.4 DOM .. 46

3. RJCE DESIGN CONSIDERATIONS... 47

3.1 OVERVIEW ... 47
3.2 ALTERING BYTE CODE .. 47
3.3 CLASS LOADERS .. 48
3.4 REROUTING EXECUTION .. 48

4. JAVAPREC DESIGN & IMPLEMENTATION ... 52

4.1 THE PRECOMPILATION STAGE ... 52
4.1.1 Character Recognition.. 53
4.1.2 Pattern Matching .. 55
4.1.3 Parser Generators (two stage pattern matching)... 57
4.1.4 Parse Trees.. 58
4.1.5 Source Beautification.. 59
4.1.6 XML Output & IO Buffering ... 60
4.1.7 Instance, Group & Class Mode .. 62
4.1.8 Method Rerouting.. 62
4.1.9 Handling Precompilation Errors.. 66

4.2 THE COMPILATION STAGE ... 67
4.2.1 Overview.. 67
4.2.2 Handling Compilation Errors... 67

4.3 USER INTERFACES.. 68
4.3.1 Command Line .. 68
4.3.2 GUI .. 69

5. ROM DESIGN & IMPLEMENTATION ... 71

5.1 SOURCE CODE INTERPRETATION ... 73
5.1.1 Pre-Interpretation Parsing ... 73
5.1.2 Handling Parser Errors .. 74
5.1.3 The Interpreter .. 75
5.1.4 Abstract Factory design pattern ... 76
5.1.5 Handling Interpreter Errors ... 78

5.2 USER INTERFACE.. 80
5.2.1 Human Computer Interaction... 80
5.2.2 Constructors .. 81
5.2.3 Source Editor... 82
5.2.4 Class Browser ... 85
5.2.5 Menus & Buttons... 88
5.2.6 Status Bar .. 89
5.2.7 Running Scripts ... 89

6. EXPERIMENTS .. 91

6.1 HYPOTHESES .. 91
6.2 EXPERIMENTS & TEST PROGRAMS .. 92

7. RESULTS & CONCLUSIONS .. 94

8. FURTHER WORK.. 96

13. BIBLIOGRAPHY.. 97

Introduction 7

 1. Introduction

1.1 Motivation

Java has made a huge impact on the world of programming. It has shown that good

language design can free programmers from many burdens, such as pointer errors,

memory allocation problems and cumbersome, platform-specific libraries. The design

of Java avoids these issues while also providing many new powerful features. Java is

platform independent and has a large API including multithreading, class loading,

reflection, graphical user interfaces, I/O, xml and regular expressions.

Although Java is a well-designed language, it suffers from a problem seen with all

compiled languages. In general, it is not possible to alter the underlying code of a

running program. The ability to alter a running program is an extremely useful

technique, particular for frequently changing code. The Java solution is class loading.

Class loading enables classes to be reloaded with new versions at runtime. However,

class loading has major limitations, which are discussed in detail in chapter three.

Alternatively, an interpreter can be embedded into an application to execute scripts

dynamically at runtime, but this approach has several major drawbacks. For example,

before a running program can be altered, it must be reengineering to incorporate the use

of an interpreter. Every method that might be altered at runtime must be changed to

allow for this.

The most powerful and effective approach is to combine both the virtues of compilation

with the flexibility of interpretation. Our system, called Runtime Java Class Editor

(RJCE), combines both interpretation and compilation to simulate the alteration of

underlying code in a running program. RJCE allows the editing of methods at runtime

in any Java program. Method edits can then be applied to a combination of objects,

such as an array, a complete class or a single instance.

Introduction 8

RJCE offers a revolutionary new approach to developing, debugging or learning Java,

enabling a program to be written from within itself at runtime. This ensures high

coupling between testing and development, with no delay before the outcome of any

alterations. RJCE improves the efficiency of programming by providing an interactive

approach to development. Code can be tested instantly after any alteration allowing

errors to be found immediately, reducing the time before resolving a problem. Code

can also be repeatedly altered and tested until it is correct using trial and error. This

makes RJCE a useful system to help students learn Java.

RJCE provides a powerful Integrated Development Environment that can be embedded

into any application in two lines of code. This allows not only source code editing but

also provides a class browser, which can be used to introspect on variables, methods,

inner-classes, interfaces and super-classes.

The main aims of the RJCE project are:

• To simulate alteration of the underlying code in a running program, by allowing

alteration of methods in classes.

• To do this in a complete, stable and reliable way, with no limitation on Java

code used.

• To provide a system, with all features reasonably expected by users, that is easy

and efficient to use.

• To hide from the user any technical aspects required to make this system to

work.

• To improve:

o The practice of building Java programs

o The debugging of such programs

o The education of students in the use of Java

Introduction 9

1.2 Report Structure

The background section provides information and background to all the technologies

considered for the project. The areas covered in the background section include

compilation, interpretation, Java, parser generators and XML. The next three chapters

contain the design and implementation of the complete system. The three areas covered

are the design of the overall RJCE system and the design of two sub components

javaprec and ROM. The following chapter considers several hypotheses and test

programs that are subsequently used to test the hypotheses. The final chapter is a wish

list of ideas that would be explored given more time.

Background 10

2. Background

During the design stage of RJCE, a wide range of technologies was considered to
achieve the desired runtime editing. At each point of the design, an effort was made to
explore as many of the different approaches as possible. This background section
covers the information required to understand the technologies used in the RJCE
system.

We first review and compare compiled and interpreted languages. Then we introduce
the Java language and the Java virtual machine (JVM). Several other aspects of Java
are also explored; these include reflection, debugging, the JVM method area and class
loading.

The next section examines two interpreters, BeanShell and DynamicJava. After this,

human computer interaction is considered by examining existing programs. This is

followed by a review of regular expressions and parser generators, before finally

finishing with XML.

Background 11

2.1 Compiled Languages

The first true digital computer was designed by the English mathematician Charles

Babbage (1792-1871) [1]. Although Babbage spent most of his life and money trying to

build his machine, he never actually succeeded. Babbage’s machine was purely

mechanical but the gears and cogs of the day did not have the required precision.

Babbage realized that he would need an operating system to run on his computer so he

hired the world’s first programmer, a young woman called Ada Lovelace [1]. After

Babbage, no real progress was made in electronic computers until the 1930s when

several visionaries, including Vannevar Bush and Jon Vincent Atanasoff, created the

first electronic programmable machines. Since these early days of computing it has

been necessary to instruct computers with sequences of codes or programs. The earliest

programming required plug boards to control the machine’s basic functions. By the

early 1950s, the introduction of punched cards improved the situation, so that it was

possible to write programs in machine code on cards and load them into a computer.

2.1.1 Machine Code

Machine code was designed primarily to be easy for a computer to read and understand.

It consists only of a string of numeric codes that represent computer operations. Each

computer has a set of available operations such as adding two numbers, multiplying two

numbers or subtracting one number from another. Every operation is given an unique

code called an operand; for example on the Intel 8086 processor, the add operand is

100000. Some operations also require parameters called opcodes. The add operation,

for example, requires two numbers to add together and a memory location for storing

the result. A complete add instruction including the operand and opcodes for an Intel

8086 chip is as follows:

1000 0011 1100 0011 0000 0011

Operands

3BX ADD unused

Opcode

Background 12

This instruction tells the chip to add three to a special memory location on the chip,

called the BX register. Writing programs in machine code is extremely difficult and

time consuming. Machine code is also difficult to understand.

2.1.2 Assembly Language

It was not long before machine code was replaced by assembly language. Assembly

language is the symbolic representation of a computer’s machine code. Assembly

language is more readable than machine language because it uses symbols instead of

numeric codes. The symbols name commonly occurring numeric patterns such as

opcodes and specific memory addresses. The previous add instructions, for example, in

assembly language is:

The ADD symbol has replaced the bit pattern 1000 00, the special memory address BX

has replaced the bit pattern 1100 0011 and the number 3 has replaced its binary form

0011. When assembly language was introduced, the speed and accuracy of writing

programs greatly improved. Before executing a program written in assembly language,

it must first be converted into machine code. A program called an assembler is used to

translate assembly language files into executable machine code files.

Opcode Operands

1st 2nd

ADD BX,3

Background 13

Figure 1, Assembling an assembly language file

Although assembly language improved the ease of programming, it was still not easy to

write or understand and was dependent on the particular machine for which it was

written. Code written for one machine must be completely rewritten for another

machine.

2.1.3 FORTRAN

The next major step in computing was to develop a machine independent language that

was easy and natural to write. At first, it was feared that this might not be possible, or if

it were, then the code would be extremely inefficient. The development of the

FORTRAN language and its compiler by a team at IBM led by John Backus between

1954 and 1957, showed initial fears to be unfounded. Since, the invention of

FORTRAN, there have been many developments in compiled languages [1].

1951 Wheeler, Wikes and Gill invent the subroutine.

1958 The Algol programming language was designed by a team of European and

 American computer scientists in 8 days. Algol was the basis for Niklaus

 Wirth’s later work on Pascal.

Assembler

0110 0101 1000
1010 0010 101
0011 0001 0010
0011 0001 0010
0110 0101 1000
1010 0010 101
0011 0001 0010
0011 0001 0101

Source File

Object File

Background 14

1967 Simula was invented introducing most of the key concepts of object-oriented

programming including: objects, classes, inheritance and namespaces.

1968 Niklaus Wirth starts work on Pascal

1970 The UNIX operating system is introduced written by Ken Thompson and

 Dennis Ritchie of Bell Labs. Ken Thompson writes the “B” language to allow

 UNIX to be written in a machine independent way.

1971 Pascal is released by Niklaus Wirth.

1972 Dennis Ritchie creates the “C” languages, inspired from “B”.

1972 Smalltalk a completely interactive development environment is developed by

 Alan Kay. Smalltalk is based on Simula and therefore is fully object-oriented.

1983 Bjarne Stroustrup evolves C++ from his earlier work on “C with Classes”.

1991 James Gosling as Sun Microsystems’ starts work on Oak by taking C++ as a

 starting point. Oak is later renamed to Java after trademark problems.

1995 Java language is officially launched.

Background 15

2.1.4 Modern Compilers

Figure 2, The main stages in compilation

Lexical

Analyzer

Source File

0110 0101 1000
1010 0010 101
0011 0001 0010
0011 0001 0010
0110 0101 1000
1010 0010 101
0011 0001 0010
0011 0001 0101

Object Program
(Executable)

Code

Generator

Token

Parser

Assembler

Linker

The technology in these two
stages is very important to
the RJCE system and is
discussed in more detail
later in the background
section.

0110 0101 1000
1010 0010 101
0011 0001 0010
0011 0001 0010
0110 0101 1000
1010 0010 101
0011 0001 0010
0011 0001 0101

Library Files

Machine Code

Assembly Language

Analysis of source

program

Synthesis of object

program

Background 16

Compilation has two subtasks: analysis of the source program and synthesis of the

object program. This division can be seen by the dotted line in Figure 2.

The first step in compilation is lexical analysis. A lexical analyser or lexer reads a

stream of characters such as a source file and produces tokens. Each token is an

indivisible set of characters such as a keyword or a variable identifier, for example

“int”, “number”, “=”, “1” and “;” are all tokens found on the first line of Figure 3.

Figure 3, Example code2

If the code in Figure 3 was feed into a lexical analysis it would start scanning at ‘i’.

When the first space between “int” and “number” has been reached the lexer would

output the first token which is the primitive type “int”. This would go on until the last

token ‘;’ had been reached on the last line. As each token is produced it is passed to the

token parser where it is stored until it has been matched against a set of rules, called

productions. For example, there would be a production for a variable definition such as

on the first line of Figure 3. This production would match the “int” “number” “=” “1”

“;” sequence of tokens. These two steps contain important technology used in RJCE,

and are discussed in more detail latter in section 2.7.

As the token parser matches the tokens against its productions, a special intermediate

model of the source file, called an Abstract Syntax Tree (AST), is created. The AST is

then used by the code generator to generate the assembly language. Once this is

complete, the assembler converts the assembly language into machine code. The final

stage of compilation called linking is used to link together separate compiled files. This

stage allows files that have already been compiled, such as library files, to be included

into programs. For example, a compiled library file might be used for writing text files

to a hard disk. Such a library file could contain several methods useful written text files

2 This and all the remaining code examples are screen shots taken from ROM.

Background 17

such as creating a new file, writing text in a file or creating a directory. To enable a

new program to use this library file the code from the library file has to be included into

the new program. This is done during the linking stage of compilation.

2.2 Interpreted Languages

An interpreter directly executes its source language, without first translating it into an

object program. This means there is no compilation stage, instead the interpreter acts

much like a CPU, with a fetch-execute cycle. This runs in a loop repeatedly reading

one instruction after another from a program and deciding what is necessary to carry out

that instruction. In general, any programming language can be either compiled or

interpreted. The optimum choice depends on the language and situation in which it is in

use. Interpreters do not required a compilation stage so all the steps in Figure 2 are

avoided.

2.2.1 Compilation - Interpretation

Some languages use combinations of compilation and interpretation. There are various

compromises between the development speed when using an interpreter and the

execution speed when using a compiler. Some systems, such as LISPs, allow

interpreted and compiled code to call each other and to share variables. This means that

once a routine has been tested and debugged under the interpreter it can be compiled

and thus benefit from faster execution while other routines are being developed. Many

interpreters do not execute the source code directly, instead, they convert it into some

more compact internal form. The compiler first translates the source language into an

intermediate language, which is then interpreted. The intermediate language is the

object code for the compiler and the source language for the interpreter. An

intermediate language is very important for languages such as Java as it plays an

important role in portability, and security.

Compilers, on the other hand, are usually preferred if speed of execution is the primary

consideration. It takes longer to run a program under an interpreter than to run an

equivalent compiled version. Interpreters are most useful when the time for compilation

is a significant amount of the total time for execution. This can be the case when many

Background 18

alterations have to be made such as during education, software development or

debugging situations. The experience gained during the creation of the RJCE system

showed the time for compilation can often be significant, particularly during debugging.

Some examples of interpreted languages include BASIC, a language that is more often

interpreted than compiled, and functional languages such as LISP, which generally tend

to be interpreted [2]. There are also three interpreted languages found on most UNIX

systems: Perl, a comprehensive interpreted language, sed, a non-interactive stream

editor, and awk, a pattern scanning and processing language [3].

2.3 Java

2.3.1 History

Java, or Oak as it was originally named, was developed by “the Green Project” of Sun
Microsystems. The secret team was directed to anticipate and plan for the next wave in
computing [4]. This initially led them to develop the Java platform by exploring digital
networked consumer devices. Java’s initial design, therefore, supported multiple host
architectures and allowed secure delivery of software components. To guarantee these
targets are met, compiled code has to survive transport across networks,
operate on any system and be safe to run. The first product
the *7 (“StarSeven”) was too far ahead of its time. *7
was targeted at the growing cable TV business that was
still trying to find a viable business model. *7
ultimately failed to secure a target market. After a
key meeting, in 1993, the team realised that there was
no viable business in digital cable television. The Java
team then changed to work with internet applications
[5] hacking a Java browser together, called HotJava,
over one weekend. In May 1995, Sun formally
announced Java, previously Oak, and the HotJava
browser. Sun’s HotJava browser demonstrated the power of Java by allowing
embedded applets to run inside web pages. Later that year, Netscape and Microsoft

Figure 4, Sun's *7 device

Background 19

announced plans to license Java applets in their browsers [6]. The following year, Sun
released Version 1.0 of the Java Development Kit (JDK) free of charge [7].

Java has had an intimate relationship with the Internet that few programming languages
can boast, growing and benefiting from the Internet’s rapid growth. Like the Internet
itself, it does not discriminate against any specific platform, so Java can reach wherever
the internet can. Due to its compiled-interpreted nature, Java programs can also be
small and fast to download, particularly when compared to C++.

2.3.2 The Java Virtual Machine

You can run the same Java programs on most operating systems including Windows
95/98/NT/2000/XP, Linux, UNIX or Solaris. This is possible because a Java program
does not execute directly on a computer. Instead, it runs on a standardized hypothetical
computer called the Java Virtual Machine (JVM). The JVM is emulated by a program
on your computer. It is like a real computer chip with an instruction set, machine code
and various memory areas such as a heap and a stack [8]. The JVM is the cornerstone
of the Java platform being responsible for system independence, small size of compile
code and security. One of the main strengths of the JVM design is that not only can a
JVM be emulated on most operating systems, but it can also be built as a real hardware
chip [9].

An analogy can be draw between a JVM and a human language translator, as used in the
United Nations. Every time an English person speaks to someone in a different foreign
language, a different translator is normally used. For Java, a different translator or JVM
is need on each platform, but this enables one language to be used everywhere.

2.3.3 Compiled or Interpreted?

Java source code is in general compiled to byte code, although Java can be executed
without any compilation for example with the BeanShell [10] or DynamicJava [11]
interpreters, these are discussed in more detail later. Byte code is machine code for a
JVM and will execute on any hardware or software that conforms to the JVM
specification. This includes emulated JVMs that are available for most operating
systems, and the picoJavaII chip. When an emulated JVM reads byte code, a program
called the Java interpreter inspects and deciphers the byte code, checking it is in the

Background 20

correct form and is safe to execute, before deciding which actions need to be performed.
These actions are then translated into the correct commands for the platform that the
JVM is running on. Java can instead be executed directly without interpretation. When
the JVM is running as a chip, for example the picoJavaII, it is not emulated and
therefore the byte code is not interpreted but executed directly instead, just as in a
normal CPU. Java can also be compiled to machine code more commonly called native
code. There are several native Java compilers such as NativeJ [12], a Java compiler for
the Windows family of operating systems. Table 1 shows a summary of the different
methods of executing a Java program.

Table 1, Methods of executing Java

Method of Execution Environment

Direct Interpretation The BeanShell or DynamicJava applications

Compilation - Interpretation
Normal Java execution, such as a Java

application running on a PC.

Compilation - Execution

Java running on any machine with a

picoJavaII chip design, or Native compilation

as with the NativeJ compiler.

2.3.4 References and Garbage Collection

Class loading is an important technology considered during the design of RJCE. To

understand class loading and its limitations fully, it is important to understand garbage

collection and how Java references work.

Java is a general-purpose object-oriented concurrent language. Its syntax is similar to C

and C++, but some features are omitted in an attempt to make Java less complex,

confusing, and unsafe. One such omitted feature is pointers. Pointers are used in C and

C++ to store the memory address of a variable or object. In Java, the memory pointer

does not exist; instead, Java only uses references to refer to objects. References are

Background 21

used to name objects; they are similar to pointers but are generally less likely to cause

memory problems, such as memory leaks.

An important reason why traditional languages, like C and C++, need memory pointers

is that they do not have automatic garbage collection. Developers instead allocate and

free memory manually, by using the malloc() and free() functions in C for instance, or

the new and delete operators in C++. In Java applications, memory is allocated by the

new operator, but developers need not free this memory explicitly. Instead, the garbage

collector’s job is to identify which objects are no longer in use. Once such an object has

been identified, the memory it occupies can then be reclaimed. An object is considered

to be still in use if it can be accessible or reachable by a program in its current state. A

Java program’s state is determined by the set of executing threads. Each thread is in

turn executing a set of methods (one having called the next). All object defined in this

set of methods as well as those defined in classes and static objects are said to be the

root set of references for a program [13]. If an object is referenced by this set of

references then it is said to be reachable and therefore cannot be reclaimed by the

garbage collector.

2.3.5 Reflection

Java reflection enables discovery of the Metadata associated with a Java class at

runtime.

Class

Method ByteCodes

Constant Pool
entry

Field

Interface

SuperClass

InnerClass

11111

1
*
*

1

1 *

*

*

1

Figure 5, Metadata in the binary class format [14]

Background 22

Metadata stores information about class characteristics, such as the base class, super-

interfaces, method signatures and field types, as shown in . Reflection allows object

instantiation, method invocation and field mutation that bypass normal language

restrictions associated with the private and protected modifiers. The main drawback

with reflection is the time penalty. Reflective method invocation, for example, actually

involves three steps. First a Method object is retrieved from a Class object with a call to

getDeclaredMethod(String name, Class[] parameterTypes), or getDeclaredMethods().

Next any parameters need to be added to an Object[], before the method can finally be

invoked by calling invoke(Object obj, Object[] args). The length of time for reflective

calls can be reduced by caching the Method. Many reflection-based systems make only

a single call to get a method, then allow many calls to invoke(Object obj, Object[]

args), avoiding some overhead after the first method invocation. In tests, the time for

the complete refection process including getting a Method was close to 105 nsec [15].

The time for just boxing the arguments and calling the method was close to 104 nsec,

this is shown in Table 2.

Table 2, Rough Estimate of Reflection Performance [15]

Operation Tested Time (power of 10 nsec)

Increment integer field 100

Invoke a method 101

Reflectively increment integer field 104 - 105

Reflective method invocation 104 - 105

Open, write and close a file 106

2.3.6 Altering Running Code

Java programs, in general, require execution to be stopped and code recompiled before
any alteration can take affect. This can be time consuming, particularly during
development or debugging. Instead, if a program’s running code could be altered

Background 23

during execution then the time spent recompiling and restarting a program could be
avoided.

2.3.6.1 Altering Code in the JVM Method Area

In UNIX, Windows and most other operating systems each process has its own memory
area called its virtual address space [16]. The virtual address space for each process is
divided into segments. Each segment is a logical division of program address space.
The address space is not actually physically divided but instead conceptually divided in
terms of how each segment of memory is used. The memory management unit
associates a protection bit with each segment to indicate the allowed operations for that
segment. A code segment, for example, has an execute protection bit. Therefore, data
in a code segment can only be executed; it is not possible, for example, to write to a
code segment. Whereas a data segment has a read-write protection bit, allowing both
reading and writing. A segmented memory scheme adds memory protection against
illegal memory access such as programs modifying their own code. Self-modifying
programs went out of style in the 1950s because they were too difficult to understand
and debug [16]. An attempt to write to a code segment normally results in a
catastrophic Memory Protection Fault, probably halting execution, and possibly
crashing your computer. In a JVM, the equivalent of the code segment is called the
method area and is shared among all threads. The method area is used to store per-class
information such as method code, constructor code, constants and fields [17]. The
current JVM specification gives no guarantees about how the method area is handled.
This is indicated by the following statement from the JVM specification “the Java
virtual machine specification does not mandate the location of the method area or the
policies used to manage compiled code.” [17]. This is significant because the JVM
specification lists the guaranteed similarities between different versions of JVMs. If the
JVM specification does not specify how to manage running code then it becomes
difficult to determine the side affects of altering running code. Does this for example
cause a catastrophic Memory Protection Fault? Does this crash the JVM? The answers
are most probably different for different JVMs. Therefore, direct manipulation of a
running program is difficult because it is hard to predict the outcome for all versions of
JVM.

Background 24

2.3.6.2 Reloading or Adding New Classes

Although, altering running code in a JVM can be difficult, class loading goes some way

to reducing this problem. Complete classes can be reloaded in any runtime

environments that support class loading; this includes not only Java but also the .NET

Framework3.

In Java, there are two types of class loading namely, explicit and implicit class loading.

Implicit class loading is done automatically via the classpath whereas explicit class

loading is done by specific request. To load a class explicitly, the fully qualified name

is passed to a class loader, which either returns a class object that represents the loaded

class or throws a ClassNotFoundException [18]. Implicit class loading occurs

whenever an unloaded Java class is demanded at runtime usually via one of the three

main non-user defined class loaders, the bootstrap class loader, the extensions class

loader and the system class loader shown in Figure 6. The bootstrap class loader loads

boot-classpath classes and Core API packages, such as java.lang. The bootstrap loader

is different from any other class loader because the classes it loads are not verified,

instead it assumes all classes it loads have well-formed byte code. The classes loaded

by the bootstrap class loader are also different because they are not subject to security

checks. The extensions class loader loads installed optional packages that usually come

as jar files. The system class loaders loads user-defined classes found on the classpath.

When a class is loaded, say class A, by a class loader it maintains a reference to the

class loader, accessible via the getClassLoader() method. Whenever a class A refers to

another class, say class B, if class B is not already loaded then class B is loaded

implicitly, using class A’s class loader [19].

3 This phase .NET Framework refers to the whole .NET Platform, which includes the Microsoft
Intermediate Language (MSIL) the common language runtime and the .NET APIs

Background 25

Extension loader

System loader

Bootstrap loader

Loads classpath class,
such as user defined classes

Loads installed optional
packages that

extend the Java API

Loads boot-classpath classes
and Core API packages

such as java.lang or java.awt

delegates to

delegates to

loads

loads

loads

Figure 6, The three main Java class loaders [14]

Implicit class loading provides a simple automatic system for loading classes, as they

are needed, whereas explicit class loading provides flexibility. However, these

mechanisms must have some additional properties to deal with the tricky issue of class

visibility. If there is no visibility across class loader boundaries, then there is no real

benefit to dynamic class loading and separate class loaders might just as well be

separate virtual machines. Alternatively, complete visibility between class loaders leads

to chaos, as there is no way to hide conflicting names of different class versions from

each other. The class loader architecture adopts a middle path characterized by the

following three rules [20]:

1. The consistency rule: class loaders never load the same class more than once.

2. The delegation rule: class loaders always consult a parent class loader before

loading a class.

3. The visibility rule: classes can only “see” other classes loaded by their class

loader’s delegation, the recursive set of a class’s loader and all its parent loaders.

Background 26

The consistency rule states that before a class can be reloaded it must first be unloaded.

Instances of Class and ClassLoader are simple Java objects, subject to the normal rules

of the Java platform. They cannot be explicitly destroyed instead they must be

reclaimed like any other object, by the garbage collector. A class therefore only gets

unloaded when it is unreachable by the root set of references [21]. The enforcement of

this in all JVMs is a core part of the Java security infrastructure, ensuring program

classes cannot be reloaded on request by external programs. If this was not the case,

class reloading could be used to unload security critical classes disabling security

features in Java software. This leaves the difficult problem of ensuring classes have no

references. Every instance maintains a reference to its class, every class maintains a

reference to its class loader and every class loader maintains a reference to every class it

has ever loaded. If you have even a single reference to any part of this hierarchy of

references then, it would most likely be the case that these classes cannot be reclaimed

by the garbage collector and unloaded. The majority of user-defined classes are loaded

by the system class loader, shown in Figure 6, and therefore cannot be reclaimed by the

garbage collector. This is not the case for classes loaded by user defined class loaders.

User defined class loader can be used to load multiple versions of a class from the same

location at different times. This technique is called hot deployment and is useful for

redeploying incremental changes to a class without having to shut down the virtual

machine [22]. It is used by servlet engines such as Apache Software Foundation’s

Tomcat to automatically reload servets that have changed. Hot deployment works by

controlling instance creation and class loading through a single factory method. This

factory method has an algorithm to choose which class it uses to create the new

instance. There are two main limitations to this approach. First, before a running

program can be altered it needs to be redesigned to allow for hot deployment, for

example, an interface type and factory method has to be created for each class that is to

be updated. Second, class loading is a sophisticated technique that can often be difficult

to implement. This makes it an unattractive technique for developers to use particularly

during debugging.

Background 27

2.3.7 Debugging

One of the most frustrating tasks a developer must face is testing and debugging
software applications. A “bug” is a software defect, the nature of which may or may
not have been identified. Bugs can be present in all phases of the software development
life cycle. The conventional way to remove bugs is to use a debugger. A debugger can
be useful because it allows the programmer the ability to step forward through a
program line by line. Most debuggers can also inspect variables and run execution until
a pre-specified break point, at which point, it is possible to step forwards line by line.
There are many Java debuggers available. For example, Sun’s JDK includes a
command line debugger called JDB [23]. Various debuggers have also been created for
graphical Integrated Development Environments, such as Borland’s JBuilder [24] or
NetBeans [25]. All these debuggers provide facilities for stepping forwards through
compiled byte code one line at a time. Some Java debuggers can even step backwards
through a program line by line [26]. Once a bug has been detected, the program’s code
needs to be altered to remove the bug. In general, Java programs, like most compiled
languages, have to stop execution and recompile code before any bugs can be fixed.

Background 28

2.4 Java Source Code Interpreters

Although Java is generally interpreted as byte code by a JVM, it can also be interpreted

as source code. There are two applications available to do this BeanShell [10] and

DynamicJava [11].

2.4.1 BeanShell

BeanShell was started in 1993 by Pat Niemeyer while working at Southwestern Bell

Technology Resources. After publishing one of the first books on the Java language,

called Exploring Java, Pat Niemeyer created BeanShell by drawing motivation from Tcl

[10]. BeanShell’s first public release was not until 1997. BeanShell is made possible

by Java’s advanced reflection capabilities. Hence, it was only possible after the release

of Java 1.1, which included reflection for the first time in Java. Since 1997, BeanShell

has slowly grown in popularity, now being distributed with Emacs, as part of the JDE

and with Sun Microsystems’s NetBeans / Forte for Java IDEs. BeanShell is used for

many purposes and in particular, is used as a popular educational tool for teaching Java.

BeanShell is a Java source interpreter that uses full Java statements and expression

syntax. It emulates strongly typed variables, methods and arithmetic, logical or bitwise

operators [27]. BeanShell begins with standard Java language and bridges it into the

scripting language domain [28]. This is done partly by allowing types to be relaxed

where appropriate, but also by adding scripting commands, for example:

• source() - Reads a BeanShell script into the current interpreter

• run() - Reads a BeanShell script into a new interpreter

• frame() - Displays a GUI component in a Frame of JFrame

• load(), save() – Loads or saves serializable objects to a file.

• cd(),cat(),dir(),pwd() – Unix shell commands

• exec() – Runs a native application

• javap() – Prints the methods and fields of an object

Background 29

• setAccessibility() – Control access to private and protected components.

BeanShell can handle both single statements and statement blocks but it cannot handle

complete classes, although this is on the BeanShell wish list. Instead, BeanShell allows

object construction via nested methods similar to the way JavaScript and Perl 5.x define

their version of classes. Although this does not provide real classes, it does provide

class like functionality, for example, allowing the creation of instances [28].

Figure 7, BeanShell scripted object [10]

BeanShell has some useful additional features. Import statements, for example, are

allowed at the start of a script to improve access to a class’s scope or namespace. The

main advantage with BeanShell is that it is easy to use and install and comes with a

complete manual. Another advantage with BeanShell is the willingness of the creator,

Pat Niemeyer, to respond to email queries, ensuring most embedding problems can

easily be solved.

Background 30

2.4.2 DynamicJava

DynamicJava is a Java interpreter, which tries to follow the Java Language

Specification as much as possible. Some extensions have been added to ease the

creation of small programs. All extensions have been added with the same goal in

mind: to reduce the amount of code to write and make it easy to translate a script to a

valid Java program [11]. Unlike BeanShell, DynamicJava supports more features and

syntax defined by the Java language, including class definition and multithreading.

DynamicJava also offers some other additional features e.g. statements can be written

outside classes or methods in the top-level namespace, methods can be defined outside

classes and typing is dynamic as in BeanShell [28]. DynamicJava also comes with a

standalone script engine, which is a simple Swing editor with the capability to interpret

the content of its buffer.

Constant strings are not shared correctly in DynamicJava. For example:

"Abc" == "Abc"

or

"Abc" == "Ab" + "c"

return false with DynamicJava and true with Java.

The main drawback with DynamicJava is the minimal information available. For

example, there is no manual or instructions, although there are a few pages of limited

information on the DynamicJava web site.

Background 31

2.5 Human Computer Interaction

RJCE contains several GUIs and user interfaces. Therefore, common modern source

editor and browsers are both surveyed.

2.5.1 Graphical Source Editors

A simple study of available graphical source editors, such as Borland’s JBuilder (see

Figure 8) or NetBeans, shows they usually come with several basic features. Sun’s

Look & Feel Design Guide also suggests similar features [29]. These include cut, copy,

paste, undo, redo, find & replace, page setup and printing. Graphical source editors

often also include syntax colouring, showing keywords in deep blue, comments in

green, quotes in blue and so on. Another useful feature found in certain editors is

context sensitive popup menus. These can be useful as they give a list of available

commands in relation to each object on the screen and therefore reduce the amount of

mouse movement required.

Figure 8, Borland's JBuilder is an example of a graphical source editor

Background 32

2.5.2 Browsers

Probably the most commonly used browser in the world is the Windows Explorer,

shown in Figure 9. This contains a directory tree structure that is easy to use for browse

directories. There are also several other browsers for Linux, for example, that use

similar techniques to display hierarchical information. Another feature found in both

Windows Explorer and several Linux internet browsers is the ability to transverse

backwards and forwards through a list of previously viewed pages. These browsers also

contain several features that are also found in graphical source editors such as cut, copy,

paste, undo, redo, find, page setup, printing and context sensitive popup menus.

Figure 9, Microsoft's Windows Explorer, XP Version

Background 33

2.6 Regular Expressions

Regular expressions are a powerful method for matching sequences of characters. They

were used both in the design stage of javaprec and are used for syntax colouring in

ROM

A regular expression is a pattern of characters that describes a set of strings. Regular

expressions were introduced to Java 1.4 in a new package java.util.regex. This package

handles Perl-like regular expressions, which are compiled into a Pattern. A Pattern is

generated using a static factory method Pattern.compile(String regex) rather than a

constructor and is stored in internal machine format rather than byte code. To develop a

regular expression in Java, a combination of ordinary and special characters are used.

Special characters serve a special purpose, for example, the . matches anything except a

new line. A regular expression like r..e would match any four-character string that

begins with r and ends with e, such as rice, race or rjce. There are many special

characters used in regular expressions to find words at the beginning of lines, words that

ignore case or are case-specific. Special characters can also symbolise a range, such as

e-r, meaning any letter from e to r, or a choice, such as [def] meaning d, e or f. Perhaps

the most useful feature of regular expressions is that they can also match multiple

characters using ? to symbolize once or not at all, * to symbolize zero or more times

and, + to symbolize one or more times. For more examples, see Table 3.

A Pattern is matched against String using a Matcher. A Matcher is created from a

Pattern by invoking Pattern’s matcher(CharSequence input) method. Once created, a

matcher can be used to perform three different kinds of match operations.

• Invoking the matches() method attempts to match an entire input sequence

against a pattern.

• Invoking the lookingAt() method attempts to find the first occurrence of a

pattern starting at the beginning of the input sequence.

• Invoking the find() method scans the input sequence to find the next occurrence

of the pattern. This kind of match operation is the most useful when writing a

Background 34

parser because, unless the matcher has been reset, the find() method always

starts searching from the last successful match.

Using Matcher is a powerful and simple approach providing the location of the start and

the end of every match, progressing automatically through a search sequence and failing

safely when no more matches are found.

Regular expression are also used in several other parts of the Core API, including the

split(String regex) method in the String class. This splits a string about each occurrence

of the regular expression, returning a String[].

Table 3, Examples of regular expressions

Regular expression Meaning Possible matches

([a-m&&[^def]]) a through to m except def a, c, m, b, g

([abc])*([de])+

zero or more letters equal to

a, b, or c followed by one or

more letters equal to d, or e.

aabcbcd, ddddddd,

eeddee, abcde, ce

(\\b4(\\w5)+\\b) any word of any length

int, bob,

verylongwordwithnospaces,

SundayMorning, String

(\\b(\\w)+\\s6(\\().(\\)).(\\{)) part of a method signature

main(String[] args) {,

toString(){, Object(){,

getClass(){

(\\bdouble\\b(\\[\\])*)
the world double with zero

or more [] after

double, double[], double[][],

double[][][], double[][][][]

4 \\b is used to symbolize a word boundary
5 \\w is used to symbolize a word character i.e. a-z, A-Z, _ or 0-9
6 \\s is used to symbolize a white-space character i.e. \t, \n, \f, \r

Background 35

2.7 Parser Generators

A parser generator is really a compiler. Instead of taking program source code as its

input, a parser generator takes a grammar. The output of a parser generator is a parser,

or compiler, that recognizes the programming language described by the grammar. In

short, a parser generator is a compiler compiler, or a parser compiler.

2.7.1 Lexers & Regular Expressions

The first stage of this approach is lexical analysis (also known as scanning). The input

text is fed into a scanner as a stream of characters. The scanner groups these characters

into tokens, which are word-like elements, such as keywords, identifiers and

punctuation. A lexical token is a sequence of characters that can be treated as a unit in

the grammar of a programming language. Forming characters into tokens is much like

forming characters into words in an English sentence and deciding which word is

meant. A programming language classifies lexical tokens, “words”, into a finite set of

token types. Tokens are matched using regular expressions, although mainly similar to

the java.util.regex they are written in a slightly different form. For each symbol a in the

alphabet of the language, the regular expression a denotes the language containing just

the string a. Given two regular expression M and N, the alternation operator written as

a vertical bar | makes a new regular expression M | N. A string is in the language of M |

N if it is in the language of M or in the language of N. Thus the language of a | b

contains two strings a and b. Using two regular expression M and N, in a sequence

makes a new expression which is the concatenation of both M and N. If M matches a

and N matches b then MN matches ab. Repetition can also be matched. Given a

regular expression M matches a, M* would match any sequence of the letter a such as

a, aa, aaa, or aaaa. Tokens can be grouped into symbols, identifiers and constants. For

example some of the token types identified in the javaprec parser are:

Symbols
QUESTION '?'
SEMI ';'
LAND "&&"
AND ‘&’

Background 36

LBRACK '['

Identifiers
IDENT ('a'..'z' | 'A'..'Z' | '_' | '$') ('a'..'z' | 'A'..'Z' | '_' | '0'..'9' | '$') *

Constants
CHAR_LITERAL '\'' (ESC | ~'\'') '\''
HEX_DIGIT ('0'..'9' | 'A'..'F' | 'a'..'f')

Keywords
IF “if”
WHILE “while”

2.7.2 Token Delimiters and Lookahead

The problem with scanners is that some tokens can be matched by different regular

expressions. For example both if and while can be matched by IDENT or IF and

WHILE respectively. Similarly, the string && would match both AND and LAND. To

solve this issue there are two disambiguating rules used that will determine which

expression to match for every case [30].

1. When a string can be either an identifier or a keyword, keyword interpretation is

preferred.

2. When a string can be a single token or a sequence of several tokens, the single

token is preferred.

The second rule is often referred to as the principle of longest substring [30], which is

the longest string of characters that can match a regular expression. This causes a new

problem to arise of exactly how to determine the end of a token. In certain examples it

is obvious such as, varOne+varTwo, where the + delimits the end of the first token. In

general, token delimiters consist of two sets. The first containing symbols such as ;, =, (

or {. The second set consists of comments, end-of-line characters and white space

characters. Java is as a free-form language [30] where white space is ignored, except to

delimit tokens. In other non-free-form languages such as FORTRAN, lexical parsers

can be more complex as white space and indentation is syntactically significant.

Delimiters end token strings but are not actually part of the token; therefore, parsers

Background 37

have to deal with some sort of lookahead. When a parser encounters a delimiter, it must

arrange that the delimiter is not removed from the rest of the input, either by returning it

to the input string known as backing-up or by looking ahead before removing the

character from the input. In many cases, a single character of lookahead will be

sufficient. In the above example varOne is only delimited by a single character +. This

character itself is also a token but must remain in the input stream so that it can be

distinguished from the increment operator ++. Sometimes a language may require more

than a single-character of lookahead. In the case of Java, a scanner must be prepared to

back up a possibly arbitrary number of characters. In this case, buffering of input

characters and marking places for backtracking become important. The parser in

javaprec uses four characters of lookahead. Such a large lookahead, standard for Java

lexers, is required to distinguish between different number formats.

2.7.3 Finite Automatas

Regular expressions are a convenient tool for specifying tokens, but they cannot be

implemented easily as a computer program. They are instead converted to a formalism

called finite automata [31]. A finite automaton (FA) is a mathematical way of

describing an algorithm, using states and transitions. This finite state machine takes an

input event and the current state and uses a state transition function to determine the

next state and the appropriate output event. A deterministic finite automaton (DFA), is

an FA where the next state is always uniquely given by the current state. A

generalization of this is a nondeterministic finite automaton (NFA). Although this type

of automaton cannot be used by a scanner, regular expressions are normally converted

first to an NFA. The next step is to convert the NFA to a DFA using an algorithm

called subset construction that constructs a subset of all the available state

transformations in the NFA [30].

2.7.4 Token Parsers and their Grammars

All that is left after tokenization are the indivisible units of the language; all the white

space and comment tokens have been discarded. In free-form languages, it would

unnecessarily complicate the parser to have to account for possible white space and

Background 38

comments at every point. This is why lexical analysis is a separate process from

parsing, making it a more reliable approach than one-stage pattern recognition.

The next stage for after tokenization is to process the stream of tokens and determine

whether the syntactic structure matches its grammar. A grammar is a formal definition

of the syntactic structure of a language. The Java Language Specification is written as a

context free BNF grammar [32]. The grammars for most complex languages are

described using Backus-Naur Form (BNF) notation or its close relative, Extended BNF

(EBNF). To explain language grammars, two simple examples of BNF will be used.

The first example will model a fictitious language called myLanguage. myLanguage

consists of two arithmetic operators * and / that operate only on integers. The first stage

of designing a grammar is to define all tokens. myLanguage only contains three tokens

MULTI, DIV & NUM.

MULTI '*'
DIV '/'
NUM (‘0’ … ‘9’) +

Next, the grammar is constructed; each of the rules in the grammar is called a

production or symbol, its name being written on the left-hand side of the rule.

myLanguage ::= NUM ((MULTI | DIV) NUM) ?

This is an example of a terminal production, which cannot be divided down any further.

Alternatively, this grammar can be written using some non-terminal productions as

follows:

myLanguage ::= number ((multiply | divide) number) ?

multiply ::= MULTI

divide ::= DIV

number ::= (lowNumber | highNumber) +

lowNumber ::= (‘0’ … ‘5’)

highNumber ::= (‘6’ … ‘9’)

This grammar can also alternatively be written in a single production with no token

names as follows:

Background 39

myLanguage ::= (‘0’ … ‘9’) + (('*’ | '/') (‘0’ … ‘9’) +) ?

The ability to write grammars with the same meaning in many different ways allows

token handling to be very context sensitive. For example if it is decided that division by

zero is not allowed this can be handled as follows:

myLanguage ::= NUM ((MULTI NUM | DIV (‘1’ … ‘9’) +)) ?

If a parser finds anything other than what is allowed in its grammar, the expression

being scanned is considered invalid. One of the parser’s main jobs is to determine the

validity of any expression it is passed. This is used in javaprec to ensure correct and

informative error handling which will be discussed later in the report.

The second example of BNF will be used to model a comma-separated list of words.

To construct this grammar will need two tokens COMMA and WORD.

COMMA ','

WORD ('a'..'z' | 'A'..'Z' | '_' | '$') ('a'..'z' | 'A'..'Z' | '_' | '0'..'9' | '$') *

Only one production is required for this grammar as follows:

commaList ::= (WORD COMMA)* WORD+

This production defines a correct list as containing one or more comma separated

words, for example: this,is,a,comma,separated,list,of,words.

2.7.5 Top-down Parsers

Top-down parsers, which start by recognizing productions at the leftmost derivation,

come in two forms, backtracking parsers and predictive parsers. A predictive parser

attempts to predict the next construction in the input string using one or more lookahead

tokens, while a backtracking parser will try different possibilities for a parse of the

input, backing up an arbitrary amount in the input, if one possibility fails. Although

backtracking parsers are more powerful, they are not commonly used because they are

much slower.

Background 40

2.7.6 LL(k) Parsers

Top-down parsers can also be separated into recursive-descent parsers and LL(k)

parsers. Recursive-descent parsers are normally used for handwritten parsers, whereas

the most common parser generators generate LL parsers. Two common LL parser

generators are for example, Java Compiler Compiler (JavaCC) and Another Tool for

Language Recognition (ANLTR). The first L in the name LL(k) refers to the fact that

an input string is transversed from left to right. The second L refers to the fact that a

leftmost derivation is traced out for the input stream. The k refers to the amount of

lookahead, for example, an LL(1) parser would uses one token of lookahead. LL

parsers parse input without backtracking. Starting at the leftmost derivation, the parser

replaces the leftmost non-terminal symbol with the matching definition of a

grammatical rule. It repeats this process until all non-terminal symbols are replaced by

terminal symbols. LL(k) parsers require k tokens of lookahead to decide which rule to

apply from a given grammar.

2.7.7 Bottom-up & LR(k) Parsers

The most general form of bottom-up parser is called the LR(k) parser. The L like with a

LL(k) refers to the fact that an input string is transversed from left to right. The R refers

to the fact that a rightmost derivation is traced out for the input stream. Two examples

of bottom-up parser generators are A Lexical Analyzer Generator (LEX) and Yet

Another Compiler-Compiler (YACC). They are both early LR(k) parser generators and

are still used today. LR(k) parsers have some advantages over LL(k). For example, the

weakness of LL(k) parsing techniques is that they must predict which production to use,

having seen only the first k tokens of the right-hand side. LR(k) is a more powerful

technique. It is able to postpone a decision until it has seen input tokens corresponding

to the entire right-hand side of a production and k more input tokens beyond. Although

LR(k) parsers are more powerful, their grammars are more complex and very difficult

to debug. Most parsers have code embedded in the productions, which performs certain

tasks when a production is completed. For example, this embedded code can often be

used to store field types in a symbol table. It is much more difficult to determine the

Background 41

order in which the embedded code will executed with an LR(k) parser, therefore, most

modern parsers are LL parsers.

2.7.8 ANLTR and JavaCC

The two parser generators considered for this project were, JavaCC and ANLTR.

Theses parsers generators were chosen as they are the most modern and widely used

parsers available.

JavaCC is a Java parser generator written in Java. First developed at Sun

Microsystems, the Java Compiler Compiler project, formerly known as Jack, began as

an effort to build a Java parser for QuickTest (now known as JavaSpec), SunTest's Java

API testing tool [33].

ANLTR is a parser generator written in both Java and C++. Originally called YUCC,

ANLTR was created as part of the Purdue Compiler Construction Tool Set (PCCTS).

PCCTS began as a project for a graduate course at Purdue University [34].

The main difference between JavaCC and ANLTR, is that ANLTR has a linear

approximate lookahead, as opposed to full LL(k) [34], where as JavaCC is both LL(1)

and LL(k) at such points where a greater lookahead is required [35]. Another difference

is that ANLTR has been an open source project since the start of writing RJCE.

JavaCC, on the other hand, has only become an open source project, in the last two

months.

2.7.9 Parse Trees

Both ANLTR and JavaCC generate a parse tree by default according to the production

rules. As the parser transverses each production, a new node is added to the parse tree

making a record of the rules and tokens used to match the input. The purpose of

building a parse tree is to allow easy translation of the input text, such as compilation in

the case of a Java source file.

Background 42

2.8 XML

2.8.1 History

In the late 1960s, the United States Department of Defense sponsored an important

conference. At this conference, they brought together several dozen graduate students

at the University of Illinois. Shortly after they proceeded to implement what quickly

became called the ARPA-Net, the grandparent of today’s Internet.

Initially, use of the Internet was limited to universities and research institutions but soon

the military became a big user. Eventually, the government decided to allow access to

the Internet for commercial purposes. There was some resentment to this among

research and military communities; it was felt that response times would become poor

as the net became saturated with so many users.

In fact the exact opposite has occurred. Businesses rapidly realized that by making

effective use of the Internet they could tune their operations and offer new and better

services. This caused massive investment and expansion of the Internet and the

development of several new programming languages and protocols.

Even though the Internet was developed more than three decades ago, the introduction

of the World Wide Web was a relatively recent event in response to the Internet’s rapid

expansion.

In 1989, Tim Berners-Lee of CERN, the European Laboratory for Particle Physics,

began to develop a technology for sharing information by using hyperlinked text

documents, which are document that are linked together over the hyper net. He wrote

protocols to form the backbone of his new hypertext information system, which he

termed the World Wide Web.

The worldwide web enabled standardization of the increasing amounts of data being

transferred between businesses. The files of the worldwide web where written in a

language, called HyperText Markup Language or HTML.

HTML was originally conceived as a set of tags to mark the logical structure of a

document; headings, paragraphs, links, quotes, code sections, and the like. This type of

Background 43

language is called a mark-up language. As more control was demanded from the web

HTML acquired more and more tags and attributes to control presentation; fonts,

margins, tables, colours. The documents became more complex and it seemed the

original goal of simplicity and universality were starting to slip away.

The remedy was widely seen as separation of content from presentation. Therefore, a

new language was developed for the transfer of data between businesses, called

Standard Generalised Markup Language (SGML). Soon it was felt that SGML was also

too restrictive, so an extensible language was developed. An extensible language, by

definition, is a language that can be expanded or extended to fit the requirements of

programmers. Extensible Markup Language (XML) is one such extensible language.

XML is designed to enable data to be easily transferred between computers in a

standard manner, Figure 10 and Figure 11 shows examples of XML.

Figure 10, Example section of an XML files

Background 44

Figure 11, Example XML file, produced by javaprec

An XML file is divided into several elements normally starting with an opening tag and

finishing with a closing tag. The opening tags can also include attributes which

generally provide information that is not part of the main element’s data. In Figure 10

and Figure 11, for example, the name and class attributes are not part of the main

method data but are still important pieces of related information. The one important

strength of XML is the hierarchical structure of data. One element can be contained

inside another element or can itself contain several other elements forming a tree like

structure. For example, consider a phonebook stored as an XML file. The top element

Background 45

might be <phonebook>. This could contain an <entry> element each which in turn

contains a <phone_numbers> and <address> element.

Figure 12, XML phone book example

Figure 12 shows an example of such a phone book XML file. Alternatively, this can be

represented using an XML Scheme diagram that shows the structure of the XML data as

in Figure 13.

Figure 13, XML Scheme diagram showing the tree structure of the phone book data

Background 46

2.8.2 Reading and Writing XML

XML files contain normal text and therefore can be read using simple text scanning. A

more sophisticated approach is to use the Simple API for XML (SAX). SAX is an

event-driven, serial-access mechanism for reading but not writing XML documents. An

alterative approach is to load the XML file into memory as a tree structure so that the

different branches can be traversed backwards and forwards extracting the required

data. This type of tree structure is called a Document Object Model (DOM). There are

several techniques for creating DOMs in Java these include JDOM, DOM4J and Java

API for XML Processing (JAXP).

2.8.3 SAX

In SAX the event driven model works by generating an event at the start and end of

each element as it scans XML data. These events are then used to trigger user-defined

actions, such as reading the contents of a particular element.

SAX suffers from several problems, for example, in general it requires a lot more

programming than DOM [36]. Another problem is that, SAX acts like a serial I/O

stream, and therefore it is not possible to go back to an earlier position or leap ahead to

a different position.

2.8.4 DOM

DOM is a standard defined for representing XML and HTML documents in memory.

DOM allows more sophisticated operations than SAX such as, navigating the structure

and adding, modifying or deleting elements. The main limitation with DOM is that an

entire XML file is loaded into memory before any data can be extracted using DOM. If

only a small amount of data had to be extracted from a large file then the complete file

would have to be loaded into memory. This can be extremely inefficient for large XML

files.

RJCE Design Considerations 47

3. RJCE Design Considerations

3.1 Overview

Our system is called Runtime Java Class Editor (RJCE). RJCE simulates the effect of

editing methods at runtime, allowing the edits to be applied to any combination of

objects, such as an array, or a complete class.

Three different techniques were considered while performing the overall design for

RJCE. The first technique we looked at was to alter the byte code of a running program

as it resided in memory. The next possibility was to use class loaders. The final

approach involved parsers and interpreters rather than class loaders. The following

sections describe these approaches in turn.

3.2 Altering Byte Code

Java byte code runs from the method area on a JVM. It is therefore theoretically

possible to alter a running program by altering its code in the method area. There are

two main problems with this approach.

• Firstly, there are no guarantees in the JVM specification for management of the

method area, as examined in the background section 2.3.2. It is, therefore,

difficult to predict how a JVM might respond if an attempt was made to write

code to the method area.

• The second problem is caused by the fact that programs are stored in the method
area in byte code. Byte code represents a Java program it its lowest level
language, after it has been compiled. Therefore, to edit a program’s byte code, a
good understanding of Java compilation and the production of byte code would
be needed, as well as a considerable amount of translation between byte code
and source code. For example, a programmer editing methods would probably
want to programme in Java and not byte code, therefore some translation
between the two and perhaps even decompilation would be required.

RJCE Design Considerations 48

Due to the level of uncertainty and the amount of new concepts that would have to be
learned, such as compilation and decompilation, this approach was not adopted.

3.3 Class Loaders

Although altering running code in a JVM can be difficult, class loading goes some way
to reducing this problem. It is generally not possible to reload classes that are loaded
using the system class loader, although this is not the case for user defined class loaders.
As discussed in section 2.3.6.2, this is because to unload a class there must be no
references from the root set of references to the class, or any of its instances. If this is
the case, the class is then said to be unreachable from the root set of references.
Unreachable classes are reclaimed by the garbage collector, and therefore unloaded.
Every class loaders maintain a reference to each class it loads. Therefore, to unload a
class the class loader that loaded it must also be unreachable from the root set of
references. System class loaders are never unreachable. Therefore, they cannot be used
to load classes, which are subsequently unloaded.

Unloading classes requires two steps. The first step is to load classes that will be
unloaded with a user defined class loader. The next step is to remove all references
from the class that is being unloaded. The first step requires all references to the user
defined class loader to be removed. Once this is done, all references to instances also
have to be removed. To allow for this a separate class loader can be used for each class,
although this is potentially a memory intensive solution. This approach also suffers
from the problem that before any method is edited all running versions of it would need
to be unloaded. Therefore, a program’s running code could not edited, but instead only
reloaded, therefore losing field values.

3.4 Rerouting Execution

The final approach investigated avoided the use of class loaders in favour of using two
alternative technologies, called parsers and source code interpreters. This design is
based around two main programs, javaprec and Runtime Object Modifier (ROM).
javaprec’s main function is to compile a program adding extra code, to allow method
editing. Each method has a hook added to the start this allows the execution to be
rerouted via an interpreter. ROM‘s main function is to enable runtime method editing
of any class that has been compiled by javaprec. ROM is also used to handle the

RJCE Design Considerations 49

interpreter and all the runtime functions of RJCE. Once an application has been
compiled in javaprec, then ROM can load its methods in the source editor at runtime.
This is loaded from an XML files that javaprec generates during its precompilation
stage. Java programs compiled with javaprec will execute normally until they reach a
method that has been edited. The execution of an edited method is rerouted via a source
code interpreter. This continues until its rerouting switch is turned off again. ROM is
used to control rerouting switches for all methods. ROM is also used to save edited
code after it has been initially loaded from the XML. RJCE allows not only methods to
be edited any number of times but also the original (compiled) method to be reused at
any point, by reloading the original source from the XML file. Method alterations can
also be applied in three modes. Instance mode applies alterations to a single instance
only. Group mode applies alterations to an entire groups such as an Object[],
Collection or Map. Group mode is implemented by saving the same edited method and
rerouting status to every Object in a group. Class mode applies alterations to an entire
class. Class mode is implemented is a similar way to instance mode except that static
fields are used rather than instance fields. From Figure 14 which shows an overview of
RJCE, javaprec and ROM can be seen

Runtime Object Modifier

javaprec

Java Source

Running ProgramInterpreter

Precompiler

XML Files

Compiler

Class Filessource editor

altered source

rerouted execution
Runtime JVM

Compilation JVM

Hard Disk

Figure 14, RJCE Overview

RJCE Design Considerations 50

javaprec produces both Java byte code class files and XML files during its two stages.

During the first precompilation stage, XML is used to store a copy of each method in

each class. This XML is later used by ROM to load the original version of methods,

prior to alteration at runtime, in the source editor. The precompilation stage is also used

to add rerouting if-statements, also called hooks, to the top of each method. If the

condition in the if-statement is satisfied then execution of the method is rerouted to an

interpreter. The precompiler also adds methods, instance and static fields to each outer-

class. Inner-classes have no variables added to them as they use the variables in their

declaring (surrounding) class. Anonymous classes are ignored because it is not

possible, in general, to use reflection on anonymous-classes. The fields added to outer-

classes are used to store method-rerouting data, such as boolean arrays which are used

to control the rerouting if-statements. The methods are used as accessor functions

guaranteeing field access without using reflection as explained in section 4.1.8.3. To

edit a method, ROM is used as an Integrated Development Environment (IDE), where

methods can be retrieved and edited like a normal graphical source editor. ROM

includes all basic graphical source editor features such as, syntax colouring, undo, redo,

cut, copy, paste, find, replace. ROM also includes a class browser, which allows the

class hierarchy including super-classes, interfaces and inner-classes to be explored. The

class browser enables field values to be viewed or instead loaded in ROM enabling the

field’s methods to be edited. ROM is designed to be as usable as possible. For

example, some potential users were asked about the look and feel of ROM. There were

several conflicting opinions on the best way to layout the source editor and class

browser. In an attempt to please everyone a view menu was added to the menu bar

which allows customization of the layout of the JSplitPane containing both the source

editor and the class browser.

javaprec’s main functions are:

• To extract the body of each method and write this to an Extensible Markup

Language (XML) file to be used later by the interpreter.

• To precompile Java source files adding rerouting if-statements, class level fields

and accessor functions for the newly added class level fields.

• To compile the java source files produced by the precompiler.

RJCE Design Considerations 51

ROM’s main functions are:

• To allow runtime editing of methods in classes that have been compiled by

javaprec.

• To handle control of method edits and rerouting switches, providing features

such as persistence of method edits and the ability to revert an edited method to

its original code.

• To allow three edit modes:

a. Instance mode: apply method edits to a single object or instance.

b. Group mode: apply method edits to all objects in a group. (Object

groups being defined by arrays, collections or maps.)

c. Class mode: apply method edits to all instances of a class.

• To allow edited methods to interpret correctly by altering the input code to take

account of the change in namespace.

• To introspect on fields, inner-classes, super-classes and super-interfaces,

presenting the information to the user in a tree structure.

• To allow new objects or object groupings to be loaded, for method editing, from

any field in the class browser referencing an object or grouping of objects

(Object[]. Collection or Map) that has been compiled by javaprec. A history is

also maintained that is used to return to previously loaded objects.

• To allow the user to load ROM in several forms, including a basic form that

only contains a text editor and a few buttons, and a full form with class-browser

• To allow execution of Java scripts.

javaprec Design & Implementation 52

4. javaprec Design & Implementation

javaprec works in two stages, as shown in Figure 14. The first stage is a precompiler,

which inserts new source code, such as fields, methods and if-statements into the input

source code. The second stage is the compilation of the precompiled Java source. The

javac compiler, from Sun Microsystems, in the com.sun.tools.javac package, is used for

compilation to ensure reliable and efficient performance.

4.1 The Precompilation Stage

The precompilation stage has two main roles, to add rerouting code and to extract

method code. The code added for rerouting is as follows:

Original
Source File

0110 0101
1000 1010
0010 0101
0011 0001
0010 0011
0000 1010
0110 0101
1000 1010

Byte Code

 javaprec

Precompiler Compiler

XML File

(temporary)
Precompiled
Source File

Figure 15, javaprec overview

javaprec Design & Implementation 53

• if-statements added to the start of non-static methods,

• class level fields added to outer classes

• accessor functions added to outer classes, non-static inner-classes but not

anonymous classes or classes defined in the body of a method

• each class that has accessor functions added to it is also extended to implement

an interface called rom.interpreter.rjce_precompiled. This interface is used by

ROM to guarantee access to the accessor functions, without using reflection.

The method code is extracted so that when a method is altered there is a copy of the

original Java source to work from. This original copy is also used in ROM to allow

users to refresh an altered method with its original code. Import statements are also

extracted so that interpreted methods have access to the same namespace as the original

method. For example, if a variable declaration declares a non-primitive type the class

must be located by the class loader. Interpreter uses the import statements so that its

class loader can correctly locate class, such as those found in the Core API.

Three different approaches were developed when designing the code parser, with each

an improvement on the one before. These were character recognition, pattern matching

and parsing with a parser generator’s parser.

4.1.1 Character Recognition

The first approach adopted was to recognize each character one by one and compare

that against the previous characters passed to determine the location of keywords within

sentences. This approach was found to be successful for basic structures in a class file

such as function signatures and class names. Character recognition, although extremely

fast, is also very complex. The complexity is partly due to the limited context

information that can easily be obtained by a simple character parser. For example, it is

legal Java syntax to write a nested class within a method or as an inner-class within an

enclosing class. To handle this correctly the information about what has previously

parsed has to taken into account. For example, a method level class can be determined

by the fact that a method signature has been already parsed but no final method body

javaprec Design & Implementation 54

closing brace has been parsed. Maintaining information about previous parsed code

makes a character parser more complex.

Figure 16, Example precompiler input

Figure 16 for example, shows a class that is legal Java syntax but would be difficult to

parse correctly. We see that public ActionControl(int input) and ActionControl() are

both constructors and therefore should not have code added to them. Whereas public

ActionControl doSomethingPublic(int input) is a method and should have code added to

it. Rerouting code should not be added to constructors because they might contain a

call to super() or this() which must always be on the first line of a constructor. This

causes a conflict with the rerouting code which must also always be on the first line.

Another example is MyAction which is declared in method doSomethingPublic(int

input). This should not have any rerouting code added and neither should its methods.

However, MyAction declared as an inner-class to ActionControl should have rerouting

javaprec Design & Implementation 55

code added. This example does not mention quotations, comments or multiple white

spaces, which all add to the complexity of parsing. For example, although braces are

used to delimit every class or method body, braces can also appear as part of a string, as

a single character literal, or in both multiple line and single line comments. Comments

can also appear between any two characters and end-of-line characters can be used

liberally in some places but not in others.

4.1.2 Pattern Matching

Pattern matching simplifies parsing by being able to match sets of characters such as

“zero or more” or “anything except”. This was, therefore, the next approach adopted in

an attempt to reduce some complexity in the parser.

Pattern recognition not only considers sets of characters rather than just individual

characters, but also allows any amount of white space or end-of-line characters to be

ignored. Pattern matching is a much more powerful method for parsing than character

recognition. This is because specific patterns or sentences can more easily recognized

using the regular expressions. A regular expression is a pattern of characters that

describes a set of strings. Regular expressions were introduced to Java 1.4 in a new

package java.util.regex. Regular expressions are used to express the different

combinations searched for in the parser input source code. A special set of symbols is

used in regular expression that allows many different character combinations such as

“one or more” or “any of the following”, this is described in detail in section 2.6.

Although pattern recognition is a powerful technique, it was often difficult to determine

a constructor from a method or array field with initializer. Constructors are not only

syntactically very similar to methods, but there are also a number of optional words that

have to be considered. Figure 17 shows an example of a legal Java class:

javaprec Design & Implementation 56

Figure 17, Example input for precompiler

The above example shows how a protected method with no protected qualifier can

easily be confused with a constructor without the ability to backtrack and recheck

ambiguous sentences. This is not available with pattern recognition. To improve the

situation, context information can be maintained, such as: which class is currently being

parsed, so that method names can be compared against the class name to check for a

constructor. Having to maintain context information, in a similar manner to the

previous character recognition approach, makes the design of this parser more complex

and prone to errors. For example, if at any point the context information is incorrect,

the remaining text will also be incorrectly recognized. Incorrect recognition is not a

problem if it can be detected. The problem arises when an undetected error occurs. For

example, it is very important to be able to detect constructors accurately because a call

to super(…) or this(…) is required to be on the first line of a constructor. If there are

any lines of code prior to a call to super(…) or this(…), the compiler will fail. The

rerouting if-statement must also be on the first line of a method. If a constructor with a

call to this(…) or super(…) is mistaken for a method, then the source file will not

compile.

Although using a pattern matcher is a good technique, it suffers from a lack of error

detection. A pattern matching approach lends itself to simpler predictable parsing

problems where complex error handling is of little or no importance, such as syntax

colouring as used in the source editor of ROM.

javaprec Design & Implementation 57

4.1.3 Parser Generators (two stage pattern matching)

Error handling should be an important part of any compiler including javaprec. For this

reason, the next approach we adopted was to use a parser generator, because modern

parser generators generally have sophisticated error-handling systems. For example, if

an unexpected token is found, an exception is thrown detailing the token found and the

expected token. The exception also gives other information such as line numbers and

column numbers for the start and end of the token. Both javaprec and ROM catch all

exceptions thrown by their parsers and output informative error messages.

A parser generator is really a compiler. Instead of taking program source code as its

input, a parser generator takes a grammar. The output of a parser generator is a parser,

or compiler, that recognizes the programming language described by the grammar. In

short, a parser generator is a compiler compiler, or a parser compiler. Parser generators

and the parser they generate are discussed in more detail in section 2.7.

The two parser generators considered for this project were, JavaCC and ANLTR. These

parser generators were chosen because they are amongst the most modern and widely

used parsers available. Both JavaCC and ANLTR, also have another advantage that

they both generate parsers which work approximately like LL(k) parsers. LL(k) parser

are not to difficult to write grammars for, unlike some parsers such as LALR parsers.

With an LALR parser, it can often be difficult to predict the order of tokens and

productions being traversed. This means the order of executed for embedded code can

also often be difficult to predict.

At the time this project started, it was decided that RJCE should be open source.

Because JavaCC was free, but not open source, and ANLTR was fully open source

ANLTR was chosen. Since the initial design decision to use ANLTR, JavaCC has

become fully open source. The Abstract Factory design pattern [37] used enables the

parser to be easily changed or upgraded. For example, a JavaCC parser could be added

as shown by the dashed box in Figure 18.

javaprec Design & Implementation 58

editor.interpretation.parser

parse(StringBuffer xmlBuffer,
StringBuffer sourceBuffer)

javaprec

editor.interpretation.ANLTRParser

parse(StringBuffer xmlBuffer,
StringBuffer sourceBuffer)

editor.interpretation.JavaCCParser

parse(StringBuffer xmlBuffer,
StringBuffer sourceBuffer)

Figure 18, The Abstract Factory design pattern

4.1.4 Parse Trees

javaprec has no use for a parse tree, normally produced during a parse. To improve the

speed of precompilation, this feature is disabled in the javaprec parser. Instead, the

javaprec parser has two output buffers, an XML representation and a precompiled copy

of the input file, as shown in Figure 19. No direct copying except identifiers, comments

and literals is done between the input and output files. Normally, parse trees are

generated when productions are traversed, but instead the code is sent to the two output

buffers. For example, when each terminal token is matched, such as a token for if or

else, the correct characters are added to the XML and source code buffers. The only

exceptions being for identifiers, comments and string or character literals tokens. For

these tokens, the text is directly copied from the source file to the output buffers.

javaprec Design & Implementation 59

Parser

Lexical
Analyzer

Original
Source File

Token
Parser

Token
Stream

Source code buffer XML text buffer

original code + rerouting codemethod code + import statements

File Generator

XML FilePrecompiled
Source File

Figure 19, Precompiler overview

4.1.5 Source Beautification

The XML file produced contains the source used for editing methods in ROM. It is,

therefore, essential to ensure the source stored in the XML output is human readable.

For example, the each statement ending in a semicolon should be on a separate line and

indented to indicate the code block it belongs to. To achieve this, syntax indentation is

incorporated into the javaprec parser. The number of opening braces and closing braces

are maintained in an integer called braceNo. Prior to each line being output, braceNo is

used to reference a cell in an array of white space strings. Each subsequent location in

the array has three spaces more than the previous location to represent a deeper

indentation. It was important to check that this relatively unimportant feature does not

compromise speed. Therefore, tests were run before and after adding the beautifying

code. The results showed a 5% reduction in speed with an error margin of 2%. This

small reduction in speed is outweighed by the advantage of having syntax indentation.

javaprec Design & Implementation 60

4.1.6 XML Output & IO Buffering

Figure 20, Scheme diagram showing structure of XML output

The structure for the XML file is kept simple with a relatively flat hierarchy no more

than two elements deep, not including the root <file> element as can be seen in Figure

20. The purpose of this is to ensure that a simple string search can be used to read the

correct information from the XML file. A simple string search was preferred to SAX.

SAX is an event-driven, serial-access mechanism for reading but not writing XML

documents. The event driven model works by generating an event at the start and end

of each element as it scans XML data. These events are then used to trigger user-

defined actions, such as reading the contents of a particular element. The javaprec

XML output files are designed to be simple; SAX is unnecessarily complex for such a

simple XML file. DOM was also avoided because DOM is memory intensive. DOM

represents the complete tree structure of a file in memory and therefore has to load a

complete XML file to memory before any data access can take place. RJCE uses, a

StringBuffer as an IO buffer for all file reading and writing. This is done so to reduce

the number of blocking IO activities to one per file. The two IO buffers, used in

javaprec, are shown in Figure 19.

The naming structure designed for the XML file enables two kinds of access to method

bodies stored in the <method> elements. A method can be uniquely identified by its

class and number or by its class, name and parameters. Therefore, the XML file for

javaprec was designed to allow a method body to be extracted from an XML file with

either the class name and method number or the class name method name and method

parameters. To achieve this, each <method> element has three attributes, a class name,

a method name and a method number. The attributes are arranged so that a text scanner

javaprec Design & Implementation 61

can locate the correct <method> with only the class name and method number or only

the class name, method name and parameters. The design of the XML file, therefore,

makes it possible to relate a class name, method name and set of parameters to the

method’s number. This is important because the method number is an important part of

tracking method switches and method edits, but cannot be determined using reflection

alone. It is used to index boolean and String arrays that contain the method rerouting

switches and any previous method edits.

Import statements are included in the XML file to enable the interpreter running the

edited method to have access to the same namespace as the original version of the

method. The import statements are passed into the interpreter importing the class

namespaces, such as java.lang.* to each method. This is essential to ensure all the

correct classes are found by the interpreter. Without this feature, altered methods would

potentially have problems finding classes that were available in the original method.

To extract both the method code and import statements the XML file is first completely

read into a StringBuffer. Next, a simple algorithm using only two String methods,

indexOf(String str, int fromIndex) and split(String regex) separates out the relevant

information.

Buffering the reading and writing operations doubled the speed of the precompiler when

it was introduced, proving that blocking IO was a bottleneck before introducing buffers.

Although buffers greatly improve the speed, they increase the risk of running out of

memory if a given file is too large. To reduce the severity of this problem when an

OutOfMemoryError is detected, the precompiler sets all buffers to null to allow the

garbage collector to free memory. Following this, the file is copied but this time

without any precompilation or the use of buffers. Now the compilation stage can still

proceed as all files the necessary files will be in the correct location. The only

difference is that the class being scanned when the OutOfMemoryError occurred, would

not be editable in ROM because is would have no method rerouting code, or XML file.

Tests were conducted on a computer with 512MB of RAM, and 160MB available

memory at the start of execution. The results showed that fabricated files of over 2MB,

consisting of over 60,000 lines and larger than any Java SDK file caused an

javaprec Design & Implementation 62

OutOfMemoryError. In each test case, the OutOfMemoryError was correctly caught by

javaprec, which compiled the file, but without precompilation.

4.1.7 Instance, Group & Class Mode

To make it possible for method edits to be applied to different combinations of objects,

three edit modes are available. In instance mode, method edits are only applied to a

single instance or object. In group mode, method edits are applied to a “group” of

objects. A “group” is an easily quantifiable collection of objects. Groups are made up

of all the objects contained in either: an array, a Collection or a Map. Group mode is,

therefore, only available for methods of objects contained in an array, a Collection or a

Map. The java.util.Collection interface is used because it is the super-interface to List

and Set. This includes not only Set and List objects found in the java.util package but

also collections used through the Java API, such as in both the Abstract Window

Toolkit (AWT) and Swing Graphic User Interface (GUI) classes. Both Collection and

Map objects are converted to an array so that all three types of object groupings can be

handled in a similar manner. Collection objects are converted directly to an array via

the Collection method toArray() and Map objects are converted to an array via an

intermediate Set, using the Map method entrySet(). Group mode method edits are

applied to all instances in the array containing the instance being edited. In class mode,

method edits are applied to a complete class. Class mode edits rely on static fields to

apply method edits to all instances both retrospectively and progressively. This,

therefore, includes both instances already created and instances not yet created.

4.1.8 Method Rerouting

4.1.8.1 if-statements

Figure 21, Typical method rerouting if-statement

javaprec Design & Implementation 63

There are several types of method that javaprec has to treat differently. To ensure no

Java language rules are broken, a different form of the rerouting if-statement is used in

each type of method, one example is shown in Figure 21.

The first, and most obvious, method classification to consider is the return type. When

an executer evaluates code, it stops execution when either it runs out of statements or

reaches a return statement. If the return statement includes a field, this is returned as an

object by the executer. If the field has a primitive type then this is returned in the

correct object wrapper, such as Integer for an int. All non-void methods, therefore,

have to cast the returned Object to the correct type. Once this done the new value in the

correct type is returned from the method allowing the rest of method body, which is the

original method, to be skipped over and not executed.

The next method classification to be considered is whether the method is in an

anonymous, method or static class:

• Java Reflection, in general, cannot be used with anonymous classes because it is

not possible to access the correct Metadata.

• Java Reflection can usually only be used on method classes in the method where

the class is defined.

• Static classes are not allowed to have non-static members. This is a problem,

because the fields required for the method rerouting are, in general, not static.

javaprec, therefore, ignores anonymous, method and static classes but adds rerouting

code to all other classes. Static methods are also ignored because it is not possible to

access non-static instance fields from within a static method.

The rerouting if-statements test elements in three boolean arrays, which the method

number is used to index. Using three arrays allows for the three editing modes:

instance, group and class.

javaprec Design & Implementation 64

4.1.8.2 Class-Level Fields and Accessor Functions

Table 4, class-level rerouting fields

Number Type Purpose

2 local, 1 static boolean[] control method rerouting

2 local, 1 static String[] store users altered code

2 local, 1 static String[] store altered code, parsed for executer

1 local String store location of associated XML file

Figure 22, Typical class-level rerouting fields from an outer class

javaprec adds several class-level rerouting fields, shown in Table 4. Each edit mode has
a boolean array, to control method rerouting, and two String arrays, to store the altered
method code. To reduce the memory requirement of precompiled objects, the String
arrays only contain null values until each method has been altered. An example of the
class-level code added to compiled files is shown in Figure 22.

4.1.8.3 The rom.interpreter.rjce_precompiled Interface

Multiple inheritance is not allowed in Java. Therefore, it is not possible to add the

rerouting fields by class inheritance; this could only be done if all input files had just

javaprec Design & Implementation 65

one super-class, java.lang.Object, but this is generally not the case. Instead, the

rom.interpreter.rjce_precompiled interface is used, which specifies accessor functions

to allow access to rerouting fields. Using this interface also provides a mechanism to

test, at runtime, whether a given class has been compiled by javaprec.

Figure 23, rom.interpreter.rjce_precompiled Interface

Figure 23 shows the rom.interpreter.rjce_precompiled interface. This interface
contains three sets of methods for each edit mode and getRjce_xmlURL(). As the name
suggests, getRjce_xmlURL() returns the Uniform Resource Locator (URL) location of

javaprec Design & Implementation 66

the associated XML file. This URL is used by ROM to locate the correct XML file
containing the unaltered method code.

4.1.9 Handling Precompilation Errors

If the parser encounters an unrecognised pattern that cannot be matched against any
available production, an exception is thrown. javaprec catches all exceptions thrown by
the parser and outputs a suitable error message. Table 5 shows the exceptions that
javaprec catches.

Table 5, Exceptions and errors thrown by the javaprec parser

Error Cause Action

OutOfMemoryError Input file too large

Output message,

offer to stop or continue, if continue:
copy file without precompilation

FileNotFoundException

Input file URL does not exist or
access is not allowed, file may
have been deleted after initial

directories were scanned.

Output message,
offer to stop or continue,
if continue: ignore this file

IOException

Error during parse, including

problem writing to file, such as
read-only access, or general

disk failure.

Output message,
offer to stop or continue,

if continue: try again

RecognitionException
Error recognising source code

either code is incorrect or bug in
ANLTR &/or the Java grammar.

Output detailed message including
file name, location and type of error

i.e. filename … line …
found … expected …,

offer to stop or continue, if continue:
copy file without precompilation

TokenStreamException

Indicates that something went

wrong while generating a stream
of tokens, such as an

IOException, or a
RecognitionException

Output message,
offer to stop or continue,
if continue: try file again

Exception

Indicates that something
general went wrong

Output message,

offer to stop or continue,
if continue: try file again

javaprec Design & Implementation 67

4.2 The Compilation Stage

4.2.1 Overview

The compilation is done once the precompilation stage has been completed and all if-

statements, class fields and accessor functions have been added. There are two ways

files can be compiled with javaprec:

• Using -re:{directories/files} command line option causes all files and directories

in the comma separated list to be recursively scanned for Java source files.

These files are then both precompiled and compiled.

-pre:{directories/files} can also be used to precompile only directories and files.

• Using normal javac commands causes normal javac compilation, but no

precompilation of the specified files.

Both types of compilation and/or precompilation can all be simultaneously specified by

a user. If precompilation is asked for it is always the first stage, followed by the

recursive directory scanning compilation, and then finally, the normal javac compilation

is performed. The javac compiler, from Sun Microsystems, in the com.sun.tools.javac

package, is used for all compilation to ensure reliable and efficient performance.

However, this introduces a small problem. The com.sun.tools.javac package has been

updated by Sun several times recently including for Java SDK 1.4.1 and SDK 1.4.2.

The parameters for several compilation methods have changed and the exact location of

the package has moved. javaprec, therefore, is very sensitive to the version of SDK

used. javaprec only conforms to version 1.4.2 of the Java SDK. This version was

chosen because it is the latest version and is the most likely version to become the

future standard for the com.sun.tools.javac package.

4.2.2 Handling Compilation Errors

If an error occurs during compilation, the compilation history for that particular

compilation is output to the console, complete with full details of the error. Then

compilation is paused, the user is informed of the error, and asked if he or she would

javaprec Design & Implementation 68

like to continue with the remaining files. To use javac, Main().compile(String[] p0,

PrintWriter p1) is invoked from the com.sun.tools.javac package. This method returns

an integer equal to one of four numbers to confirm the compilation status as shown in

Table 6.

Table 6, Values returned from com.sun.tools.javac.Main().compile()

Value Returned Cause

0 Compilation successful

1 Compilation error

2

Command interpretation error

3

System error

4

Abnormal error

For each compilation, the return value is checked if it is equal to one of the three error

values, then the javac compilation status is output to the console. An error message is

also displayed to the user, via either the console or a popup confirmation box.

The NoClassDefFoundError error is also handled. This error is, usually, caused by the

Java SDK 1.4.2 not being installed or the classpath not being set correctly. The

classpath has to point to the tools.jar contained in the lib subdirectory of a Java SDK

1.4.2 installation. This file contains the com.sun.tools.javac package used for

compilation.

4.3 User Interfaces

4.3.1 Command Line

The command line user interface is designed to be similar to javac. There are five

additional unique options shown in Table 7. A full list of the command line options can

be seen in Figure 24.

javaprec Design & Implementation 69

Table 7, javaprec command line options, additional to normal javac options

Option Outcome

-gui

Load graphical user interface

-re:{directories or files}

Specify directories or files for precompilation &
compilation (comma separated list)

-pre:{directories or files}

Specify directories or files for precompilation only
(comma separated list)

-tmp <directory>

Keep intermediate precompiled source files, useful
for tracing error line-numbers

-quiet

Generate no precompilation info

Figure 24, javaprec command line usage screen shot

4.3.2 GUI

javaprec has the same core features for both the command line and the GUI. The GUI

also additionally provides a progress bar and allows the user to browse for directories

rather then specifying URLs at the command line. Another feature that only the GUI

provides is the ability to alter the log file name and location.

javaprec Design & Implementation 70

Figure 25, The javprec GUI

ROM Design & Implementation 71

5. ROM Design & Implementation

When designing ROM there were several aims, as mentioned previously in section 3.

These can be summarised in two main goals:

• Enable efficient interpretation of altered methods and stand-alone scripts using a

source code interpreter.

• Create an easy and efficient user interface to edit methods and introspect on

variables

When Java source is interpreted by the source code interpreter the execution behaves as

if it was taking place in its own scope or namespace, separate from any classes already

running. To allow for the change in namespace ROM uses a parsing stage to alter the

code prior to execution. This is done once after each method alteration and saved. If a

method is invoked repeatedly, the parsing stage is only done the first time. ROM uses

two String arrays to save method alteration in the objects being altered. One of the

String arrays is for original unparsed code and the other String array is for parsed code.

Each method’s number can be used to index the correct String elements in each array.

The parsing stage to transform a String from the original array version to the parsed

array version is implemented using the same approach as the javaprec parser, explained

in section 4.1.3.

The user interface, shown in Figure 26, has two main areas, a class browser and a

source editor. It is used by instantiating an instance of rom.gui.CodeEditorFrame. This

class can be instantiated using several different forms of constructor, although each one

requires an Object that has been compiled by javaprec as the first parameter. If an

Object that has not been compiled by javaprec or has a null value is passed as a

parameter to a CodeEditorFrame constructor then a rom.gui.NotPrecompiledException

is thrown with a suitable message.

ROM contains a JSplitPane used to contain the source editor and class browser these are

used as follows:

ROM Design & Implementation 72

• The class browser allows the class hierarchy including super-classes, interfaces

and inner-classes to be explored. The class browser also enables field values to

be viewed, being displayed using the toString() method. Objects that have been

compiled with javaprec or arrays, collections and maps of such objects can be

loaded directly from the class browser. ROM maintains an ordered history Set.

This can be transversed backwards and forwards, allowing multiple objects to be

simultaneously edited. The class browser also allows methods to be loaded to

the source editor. When the method is selected in the class browser if the class

has been compiled with javaprec, the method code will be loaded in the source

editor.

• The source editor displays Java source. The text is automatically syntax

coloured 500 ms after typing stops, although this feature can be turned off. The

ROM source editor also provides all the basic features of most graphical source

editors, as discussed in section 2.5.1. ROM includes many features, for

example: Java scripting, informative error messages, syntax colouring, cut,

copy, paste, undo, redo, find & replace, view layout, page layout and printing.

These features are included to increase the usability of ROM.

Figure 26, ROM screen shot

ROM Design & Implementation 73

5.1 Source Code Interpretation

Interpretation is done in two stages. First, the source code is parsed, and then the parsed

code is parsed to the interpreter.

5.1.1 Pre-Interpretation Parsing

As previously mentioned, when Java source is interpreted by the source code interpreter

the execution behaves as if it was taking place in its own scope or namespace, separate

from any classes already running. Therefore, before using a variable or object in any

interpretation it must first be added to the interpreter’s namespace. A variable or object

can been added to the interpreter’s namespace by using one of the primitive set methods

such as set(String name, int variable) or the Object set method set(String name, Object

object). Although, this approach is sensible for setting method parameters prior to

rerouted execution in the interpreter, it would not be sensible to use for all fields in a

class. Not only can each class potentially have hundreds of public, private or protected

fields - and several super-classes - but also it is not possible to set methods. Therefore,

an alternative approach is adopted for class fields and methods.

First using Java Reflection a comprehensive list of class fields and methods is
generated. The code is then scanned using a parser, generated from ANLTR. The
parser adds “CALLING_CONTEXT.” to the front of each method or field. Inner-class
types also have their package and outer-class name added. If a new field is declared
having the same name as a field in its class then this field is ignored for the remainder
of the parse. Every use of this and super is also replaced by “CALLING_CONTEXT”.
Prior to interpretation the set method is called as follows, set(“CALLING_CONTEXT”,
this). This passes the current object into the interpreter as a variable called
CALLING_CONTEXT, so that class fields and methods references work correctly. The
interpreted solution used in RJCE is particularly effective because the interpreter uses
reflection, for method and field references. Reflection can easily be setup to ignore
private and protected modifiers, as discussed further in section 2.3.5.

ROM Design & Implementation 74

There is one problem using the CALLING_CONTEXT approach. There is no way to
reference a variable in the super-class of CALLING_CONTEXT as well as in
CALLING_CONTEXT itself. The normal approach to do this is to use super, but use of
super presents a problem when this could identically be
used, as they are both replaced with
CALLING_CONTEXT in the parser. For example if a
Tree class was a sub-class to a Plant super-class, they
might both have name fields as shown in Figure 27.
The Plant name field might be “Tree” whereas the Tree
name field might be “Eucalyptus”. If super was used in
a Plant method, and it was executed correctly, it would
refer to the Tree name field. Instead, the value for the
Plant field name would be used during execution in the
interpreter.

For the following statement, for example,

System.out.println(“ I am a “ + this.name + super.name);

the output would be as follows:

un-altered method “I am a Eucalyptus Tree”

altered method “I am a Eucalyptus Eucalyptus”

Once a method has been parsed, it is stored in the correct code array, for parsed code.

Prior to execution, the parsed code array is checked for null to determine whether the

altered method code needs to be parsed. If the array or the correct element is null then

the method is parsed and this is loaded into the array ready for a subsequent invocation

of the same method. If a method is altered, by a user, the parsed code array element for

that method is set to null. This ensures methods are only parsed once after each

alteration.

5.1.2 Handling Parser Errors

If the parser encounters an unrecognised pattern that cannot be matched against any

available production, an exception is thrown. ROM catches all exceptions thrown by

the parser, shown in Table 8, and outputs a suitable error message.

Tree

name: String

Plant

name: String

Figure 27, Inheritance example

ROM Design & Implementation 75

Table 8, Exceptions and errors thrown by the ROM parser

Error Cause Action

OutOfMemoryError Input file too large

Output message,

offer to stop or continue, if continue:
copy file without precompilation

FileNotFoundException

Input file URL does not exist or
access is not allowed, file may
have been deleted after initial

directories were scanned.

Output message,
offer to stop or continue,
if continue: ignore this file

IOException

Error during parse, including

problem writing to file, such as
read-only access, or general

disk failure.

Output message,
offer to stop or continue,

if continue: try again

RecognitionException
Error recognising source code

either code is incorrect or bug in
ANLTR &/or the Java grammar.

Output detailed message including
file name, location and type of error

i.e. filename … line …
found … expected …,

offer to stop or continue, if continue:
copy file without precompilation

TokenStreamException

Indicates that something went

wrong while generating a stream
of tokens, such as an

IOException, or a
RecognitionException

Output message,
offer to stop or continue,
if continue: try file again

Exception

Indicates that something
general went wrong

Output message,

offer to stop or continue,
if continue: try file again

5.1.3 The Interpreter

Two interpreters were considered during the design of ROM. The first interpreter

considered, BeanShell, provides all the features required by ROM. The second

interpreter, DynamicJava, provides more features in certain areas such as the ability to

interpret complete classes. Under tests, DynamicJava performed at twice the speed

when compared to BeanShell although both performed slowly when compared to

ROM Design & Implementation 76

normal execution. The first test involved running a for-loop and a while-loop for 1000

revolutions each time outputting a message to the console. The second test involved

reading text from a file reversing it then writing it back to the file. Both tests were done

10 times each to get an average and a margin of error. The timings were calculated

using the Calendar class by outputting a message before and after execution, with the

time since UNIX zero, in milliseconds.

Table 9, Execution times for two test cases, in BeanShell and DynamicJava

Test Case BeanShell DynamicJava

One 13s (±1s) 6s (±2s)

Two 133s (±3s) 65s (±2s)

Based on the information shown in Table 9, DynamicJava should be the obvious choice,

but it has no manual or instructions and little information on its web site. It was

possible to get DynamicJava to execute scripts, although, it provided difficult to use

with altered methods. This was mainly due to problems with both the return type, often

the null value was returned when an Object was expected. Therefore, after several

unsuccessful attempts to get DynamicJava to work, BeanShell was instead used.

5.1.4 Abstract Factory design pattern

An Abstract Factory design pattern [37] was used to enable the interpreter to be easily

changed. This was done so that if the current problems with DynamicJava were fixed it

could be used instead of BeanShell. This approach also allows for the possible use of

new interpreters or executers not yet considered in the design, such as Java Native

Interface (JNI). JNI is a cross-platform standard provided by the JVM. It allows a JVM

to share a virtual address space with platform native compiled code [38].

ROM Design & Implementation 77

editor.interpretation.RJCEReroutedExecuter

executeMethod()

Client

editor.interpretation._RJCEInterpreter

executeMethod()

editor.interpretation._RJCEJNI

executeMethod()

Figure 28, The Abstract Factory design pattern

RJCEExecutionFactory implements the Abstract Factory design pattern by providing a

factory method that loads the correct class to handle the rerouted execution. Figure 28

shows the possibility of added a JNI rerouted method executer. This design makes it

theoretically possible to optimise the rerouted execution by passing methods, which

contain no private or protected references to a faster JNI executer, while passing all

other methods to an interpreter. The rerouted execution of each method is also handled

using the Factory Method design pattern [37], see Figure 29.

Client

editor.interpretation._RJCEInterpreter

executeMethod()

editor.interpretation._RJCEJNI

executeMethod()

RJCEExecutionFactory

getReroutedExecuter()

Figure 29, The Factory Method design pattern

ROM Design & Implementation 78

Each class that can potentially handle rerouted execution must implement the

editor.interpretation.RJCEReroutedExecuter interface, providing all the methods

required for execution.

5.1.5 Handling Interpreter Errors

If the interpreter encounters a problem including, for example, unrecognised code or

incorrect use of a null object, an exception is thrown. ROM catches 50 different

exceptions thrown by the interpreter as shown in Table 10.

java.lang.Throwable

java.lang.Exception

java.lang.Error

koala.dynamicjava.parser.wrapper.ParseError

antlr.ANTLRException

antlr.RecognitionException

antlr.MismatchedCharException

antlr.MismatchedTokenException

antlr.NoViableAltException

antlr.NoViableAltForCharException

antlr.SemanticException

antlr.TokenStreamException

antlr.TokenStreamIOException

antlr.TokenStreamRecognitionException

antlr.TokenStreamRetryException

java.lang.ArithmeticException

java.lang.ArrayStoreException

java.nio.BufferOverflowException

java.nio.BufferUnderflowException

javax.swing.undo.CannotRedoException

javax.swing.undo.CannotUndoException

java.lang.ClassCastException

java.lang.CMMException

java.lang.ConcurrentModificationException

java.lang.DOMException

ROM Design & Implementation 79

java.lang.EmptyStackException

java.lang.IllegalArgumentException

java.lang.IllegalMonitorStateException

java.lang.IllegalPathStateException

java.lang.IllegalStateException

java.lang.ImagingOpException

java.lang.IndexOutOfBoundsException

java.lang.MissingResourceException

java.lang.NegativeArraySizeException

java.lang.NoSuchElementException

java.lang.NullPointerException

java.lang.ProfileDataException

java.lang.ProviderException

java.lang.RasterFormatException

java.lang.SecurityException

java.lang.SystemException

java.lang.UndeclaredThrowableException

java.lang.UnmodifiableSetException

java.lang.UnsupportedOperationException

java.lang.LinkageError

java.lang.ExceptionInInitializerError

java.lang.NoClassDefFoundError

java.lang.NoSuchFieldException

java.lang.NoSuchMethodException

editor.gui.EvaluationException

Table 10, List of exceptions handled by ROM

Each exception is handled by displaying an appropriate error message, including line

and column numbers for relevant exceptions. If an exception is thrown, execution of

the current method stops. If there is an Object return type then null is returned. If there

is a primitive return type the default value is returned, such as, false for boolean.

Otherwise, if there is no return type then nothing is returned.

ROM Design & Implementation 80

5.2 User Interface

Figure 30 shows the GUI for ROM. An important consideration throughout the design

and implementation of the ROM GUI was usability and look & feel. Therefore, during

the implementation of ROM, several potential users were used to test the look & feel.

ROM was designed to look familiar but distinctive. ROM was designed to look familiar

in that it used easily recognizable symbols and methods of operations in order to make

the interface easier to use.

Figure 30, RJCE screen shot

5.2.1 Human Computer Interaction

To implement an effective GUI several sources of information were simultaneously

considered. First, ROM was designed to look similar to current popular source editors

such as Borland’s JBuilder or NetBeans. Borland has had many years experience in

designing and implementing GUIs. Therefore, it was felt this would be a suitable

product to look at for inspiration. The next source of information was the Java Look

and Feel Design Guidelines [29]. These guidelines were used to choose the wording

and order of the menu and toolbar items. The last source of information used was to ask

potential users what they though of the GUI.

ROM Design & Implementation 81

The features that were added because of the comparison with other source editors, are

cut, copy, paste, find, replace, page setup, printing, status bar, syntax colouring, syntax

indenting (added to original XML in javaprec).

There were several features also added because of look & feel testing. The main initial

requests were to add more colours; previously the whole GUI was monochrome. Due to

the conflicting opinions between potential users about whether the source editor should

go on the right, left, top or bottom, the view menu was added. This enables, for

example, the split panes to swap around, shown in Figure 31.

 Figure 31, ROM's view menu

5.2.2 Constructors

One of the aims of RJCE was to allow the user to load ROM in several forms, including

a basic form that only contains a text editor and a few buttons, and a full form with

class-browser. It was intended that this be implemented by providing several different

constructors for the CodeEditorFrame class that is used to open an editor window.

Unfortunately, due to lack of time, this feature was not fully implemented. Only two

non-private constructors are provided as shown in Figure 32.

Figure 32, Constructors for rom.gui.CodeEditorFrame the main ROM GUI class

ROM Design & Implementation 82

5.2.3 Source Editor

5.2.3.1 Syntax colouring

Syntax colouring is achieved in ROM using a dedicated pattern matching Thread. A

pattern matcher scans the text for each pattern that has a specified colour. The regular

expression (\\bprotected\\b) is used, for example, for the word protected. The syntax

colouring thread is triggered after every text alteration. To reduce the effect syntax

colouring has on maximum typing speed a timer is used. This enabled syntax colouring

to start only 500 ms after the last text alteration; although if alterations are made more

than 500 ms apart, syntax colouring occurs for each one. Before this timer was

introduced, syntax colouring could often be the cause of the source editor freezing for a

short period when many text alterations were done in quick succession. The automatic

syntax colouring can be turned on or off, using the toolbar, view menu in Figure 31 or

the third constructor in Figure 32.

5.2.3.2 Line and Column Number

Each time the syntax colouring is performed, the line and column numbers on the status

bar are updated. This means that the calculation of the line and status numbers also

only takes place 500 ms after the last text alteration. The line number is calculated by

counting the number of ‘\n’ characters. One of the simple but useful features of

JTextPane is that a JTextPane instance always uses the ‘\n’ character to represent a new

line regardless of the operating system. In Java there are two properties that deal with

new lines. The system property, line.separator, is defined to be platform-dependent,

either "\n", "\r", or "\r\n". There is also a property defined in DefaultEditorKit, used in

JTextPane, called EndOfLineStringProperty, which is defined automatically when a

document is loaded, to be the first occurrence of any of the new line characters. When a

document is loaded, EndOfLineStringProperty is set appropriately, and when the

document is written back out, the EndOfLineStringProperty is used. While the

document is in memory, the "\n" character is used to define a new line, regardless of

how the new line is defined when the document is on disk. Therefore, for searching

purposes, "\n" is always be used, which simplifies the calculation of line and column

numbers.

ROM Design & Implementation 83

5.2.3.3 Cut, Copy, Paste

Cut, copy & paste, are automatically implemented with JTextPane in the methods cut(),

copy() and paste(). All that was required in ROM, therefore, was to connect these

features to the menu buttons.

5.2.3.4 Undo & Redo

At first, a normal UndoManager was used to control undo and redo. UndoMangers

work well with Document objects. All that is required to use undo and redo is to invoke

the addUndoableEditListener(UndoableEditListener listener) method on a Document.

Each time the syntax colouring Thread runs, the undo and redo buttons are updated and

the edit menu, which displays the undo or redo presentation name is updated. The undo

and redo presentation name gives the user an indication of the type of action available.

A presentation name might be, for example, “undo addition”, “redo subtraction” or

“undo insertion”. Therefore, when a user has deleted some text the undo presentation

message would be “undo deletion”. One problem found with the normal Core API

UndoManager class is that it stored syntax colouring changes. The syntax colouring

edits text to change its colour. When using the UndoManager it adds syntax, colouring

edits to the undo and redo lists. To solve this problem a new undo handler was written

as a subclass of UndoManger but with an overloaded addEdit() method. The new

addEdit() tested an edit for its type and ignored style changes.

5.2.3.5 Find & Replace

Find and replace uses a simple recursive text scanning algorithm. The features

implemented include: whole words only, match case, upwards search direction,

downwards search direction, find, replace and replace all. When a match is found the

characters are highlighted and the scroll bar is moved so that a user can easily see the

location of the identical character sequence.

5.2.3.6 Saving & Loading

Any normal text file can be loaded into the ROM source editor. This is done using

JFileChooser. JFileChooser allows users to browse the directory structure or manually

type a URL. JFileChooser also enables control of the files displayed to users. ROM, by

ROM Design & Implementation 84

default, only displays Java source files, although this can be easily changed. The source

editor can also be saved to any valid URL. If no extension is specified by the user the

“java” extension is added.

5.2.3.7 Page Setup & Printing

To enable printing, JTextPane was extended to create a new class PrintableJTextPane.

PrintableJTextPane implements the Printable interface by providing the print()

function. This function is used to scale the text in the source editor ensuring it fits

correctly on a printed page. The scaling formula includes terms for font size, page

width and longest line. The longest line stored is recorded as the line and column

numbers are calculated. The longest line is used to allow scaling to be based on the

width of actual text rather than the width of the text area, which also includes the empty

space at the end of a line. Figure 33, shows two example printouts. Example one has

the longer lines and therefore is scaled so that the text is smaller than in example two.

Figure 33, Two example printouts from ROM, showing printer scaling

The scaling used also considers the font size so that a larger font size results in larger

text and page size, so that text on horizontally aligned pages will appear larger then on

vertically aligned pages. This approach cannot handle multiple pages; instead only the

first page is printed. Although this is a limitation, this design decision was a trade-off

String message = “This is printer scalling”;
System.out.println(message);

example one

int i = calculateValue();
return i;

example two

ROM Design & Implementation 85

against taking longer to implement a multi-paged scaling system that would allow

multi-page printing.

To handle interactions with printers PrinterJob is used. PrinterJob encapsulates and

manages the printing process for a given printer that is external to the JVM. Therefore,

PrinterJob cannot be instantiated using a constructor. Instead a PrinterJob can only be

obtained from the operating system by using the static method getPrinterJob() that is

defined in the PrinterJob class, for example:

PrinterJob printJob = PrinterJob.getPrinterJob();

Once a PrinterJob has been setup, any Object that implements the Printable interface

can be passed to the PrinterJob by calling setPrintable(Printable painter). This method

renders the painter parameter correctly using the print() function, which in the case of

ROM scale the text to fit the printer’s page size.

5.2.4 Class Browser

The class browser is an important part of the ROM GUI, increasing the usability by

showing a class view of the running program. The JTree used to display the class

hierarchy is dynamic, only loading cells when they are viewed for the first time. Any

branches that contain no leaves or other sub-branches are not displayed in order to make

the tree structure clearer. There are five different types of class node in the class

browser as follows:

5.2.4.1 Fields

The field’s values are retrieved using reflection, the value returned in an Object

• If the Object retrieved has not been compiled by javaprec then its value is

displayed using the toString() method for 4500 ms.

• If the Object retrieved has been compiled by javaprec then this Object is loaded

in ROM, and the previous Object is added to the history. Once there is more

than one Object in the history it is possible to use the backwards and forwards

button on the toolbar to move through the history.

ROM Design & Implementation 86

5.2.4.2 Methods

Both outer-class and inner-class methods can be edited at runtime. Methods that cannot

be edited at runtime are greyed out and it is not possible to select them. When a method

that can be edited, is selected in the class browser its code is loaded in the source editor.

The parameter’s names and types are also displayed in the status bar. This is to inform

users of parameter names. These are useful when referring to a parameter in an altered

method. The parameter names are not displayed in the class browser because of the

amount of rendering required for a JTree. When expanding a tree branch, scrolling the

class browser or moving the ROM JFrame, all the visible tree cells get re-rendered.

There can often be over 100 visible cells. Therefore, rendering code has to be relatively

efficient. XML file produced by javaprec includes the parameter names and their types.

Therefore one way to obtain parameter names and their types would be to use the XML

file. When this approach was implemented, ROM repeatedly froze for long periods. To

solve this problem, only parameter types are displayed because these can be obtained

using reflection. Reflection is much faster than IO in this case, and has little or no

detrimental effect on the responsiveness of ROM.

To load a method, the XML file associated with the method’s class is scanned for the

correct method element. Once the correct method start tag has been found the section

between this point and the next method close tag is both copied to the source editor and

saved in one of the object’s String arrays.

5.2.4.3 Super-Classes

The super-class structure can be followed back to java.lang.Object. The top-level

super-class branches allow field access because super-class fields can be accessed via

reflection.

5.2.4.4 Inner-Classes

All inner-classes can be viewed. Top-level inner-class methods can be edited in ROM

but their fields cannot be viewed or loaded. This is because to access a field in the

inner-class an instance of the inner-class is needed - this is not available.

ROM Design & Implementation 87

5.2.4.5 Interfaces

All interfaces are displayed, including super-interfaces. Top-level interfaces can have

their fields values viewed or loaded.

Figure 34 shows an example of the ROM class browser.

Figure 34, ROM's class browser

ROM Design & Implementation 88

5.2.5 Menus & Buttons

Figure 35, shows the menu bar options and Figure 36 shows the toolbar options

available in ROM. Each menu bar, tool bar or popup option is implemented as a

subclass of AbstractAction. AbstractAction objects are extremely flexible and powerful.

AbstractAction implements the Action interface. This interface declares methods

required for an action, such as actionPerformed(ActionEvent e). The Action interface

also extends the ActionListener interface making all Actions also listeners. Some GUI

components, such as JMenu and JToolBar, have an add() method that accepts an

argument of type Action. When an AbstractAction is added to a JMenu the add()

function returns a JMenuItem; but when an AbstractAction is added to a JToolBar the

add() function returns a JButton. This means each action class only has to be written

once, but can be used simultaneously in a JMenuBar, JToolBar and JPopupMenu.

Figure 35, ROM's toolbar and menus

ROM Design & Implementation 89

Figure 36, ROM's toolbar

5.2.6 Status Bar

The status bar displays useful information to users, as shown in Figure 37. The status

bar displays the line number, column number, status message, rerouted status, modified

status and edit mode. The line number and column numbers on the left hand side of the

status bar are calculated as part of the syntax colouring thread. The rerouted method

status displays two messages. “Use original code” is displayed if method rerouting is

not switch on, whereas “method rerouted” is displayed if method rerouting has be

switched on for a particular method. The edit mode displays one of: “instance”,

“group” or “class”. The status message displays method parameter names. It is also

used to echo error and confirmation messages.

Figure 37, ROM's status bar

5.2.7 Running Scripts

Java source can be run from ROM’s source editor by using either the keyboard short

cuts Ctrl-E and Shift-Ctrl-E or by selecting one the run buttons. Source code is

interpreted in an identical manner to altered methods. For example, when scripts are

ROM Design & Implementation 90

interpreted, there is a pre-parser stage identical to the pre-parser stage used for

interpreting altered methods.

5.2.7.1 Error Handling Scripts

The error handling for running scripts uses the same classes as the error handling for

altered methods and therefore works identically to the description in section 5.1.5.

Results & Conclusions 91

6. Experiments

An important aim of this project was building a stable, reliable and complete system.

To test the RJCE system, some hypotheses were considered against the aims of the

project. Experiments were then performed with the aim of proving or disproving each

hypothesis.

6.1 Hypotheses

The key aims of the RJCE project are:

• To simulate alteration of the underlying code in a running program, by allowing

alteration of methods in classes.

• To do this in a complete, stable and reliable way, with no limitation on Java

code used.

There were other subsidiary aims, but the hypotheses focus entirely on the key ones. In

order to test that the key aims have been achieved the following hypotheses were

considered:

1. The RJCE system does not allow the simulation of the alteration of the

underlying code, by allowing method edits.

2. The RJCE system is not complete, nor stable or reliable.

3. The RJCE system does meet its key aims.

Obviously, it is necessary to disprove the first two hypotheses and prove the third.

Results & Conclusions 92

6.2 Experiments & Test Programs

To test the hypotheses six test programs were used. These test programs were chosen in

part because each has been written by a different author. This approach was chosen

because each programmer has his own style, increasing the probability that the different

test programmes will cover the widest area of the Java language. The test programs

used are summarized in Table 11.

Table 11, Test programmes for RJCE

Program Name Size
(characters) Main Activities Author

IOTestProgram 9952 Read and write and edit text files James
Bloom

HTMLProcessor 9976 Loads HTML files Sun
Tutorial

TransformArt 10494 Transforms simple shapes using Java2D Sun
Tutorial

AutoArt 364896 Generates sophisticated drawings Simon
Colton

BeanShell 957600 Interprets Java Source Code Pat
Niemeyer

ANLTR 1169172 Generate parsers Terence
Parr

The test programmes showed that the main activities in Table 11 all work satisfactorily

after being compiled by the RJCE compiler. In addition, each test program

independently proves that RJCE can alter methods at runtime. The test programmes

show that the first hypothesis is satisfied. The third hypothesis is partly satisfied – as is

the second.

Two experiments were performed to test the hypotheses. The first experiment involves

comparing javac with javaprec. This was done by compiling each of the six test

programs with both compilers and comparing the results. Both the speed of compilation

and the size of files produced were compared.

Results & Conclusions 93

The second experiment involved testing the interpreted execution of four different

methods:

• for-loop: this was contained a simple for-loop with some basic integer

manipulations

• while-loop: this was similar to the for-loop except a message was output to the

consol rather than performing integer manipulations

• recursion: this method recursed 20 times

• GUI creation: a simple GUI was created with two JButton objects

At the start and finish of each method, the time in milliseconds was recorded using an

instance of Calendar. This allowed comparisons to be made between the time taken to

execute each method. The results for these experiments are shown in section 7.

The experiments showed that execution is possible in a reasonable period for an

interpreted method. With refinement, the RJCE project could be improved so that the

time for execution would be reduced. However, the experiments were sufficient to

show that the first two hypothesis were disproved and the third proven.

Results & Conclusions 94

7. Results & Conclusions

The speed to compile each program was recorded as follows in Table 12:

Table 12, Average results from javaprec - javac comparison

 javac javaprec

Test Program Duration (ms) Speed (char/ms) Duration (ms) Speed (char/ms)

AutoArt 1181 309 4697 78

HtmlProcessor 581 17 2975 4

IOTestProgram 566 18 3765 3

TransformArt 525 20 2647 4

ANLTR 3597 338 15309 77

BeanShell 2635 372 11118 87

Average 1514 179 6752 42

These results clearly show that javaprec is on average just over four times slower than

javac. Although these figures are not ideal, the absolutes times are still very low and

therefore do not represent a significant problem. javac is an application which has had

many years of optimisation whereas javaprec is a new product and therefore should

have a much greater potential for optimisation. This should help to reduce the gap

between javac and javaprec in due course.

Results & Conclusions 95

Table 13, Comparions between interpreted and normal execution

Average Normal Execution
Time (ms)

Interpreted Execution
Time (ms) “Slow-down” factor

for-loop 5388 6208 1.2

while-loop 22839 24109 1.1

Recursion 31 1208 38.0

GUI creation 2432 2479 1.0

Table 13 shows that with the exception of recursion the interpreter appears to compare

surprisingly well with normal execution. It would be desirable to test with a wider set

of examples – not least to ensure that the good results so far are correct.

Further Work 96

8. Further Work

My wish list for the most important further work is to:

• investigate RJCE’s potential for Aspect Oriented programming

• investigate the potential of a JNI executer

• improve the installation process by building an installer

• enable persistence of editing by saving method edits to their XML file

• enable the saving of method edits to their source file

• to incorporate tabbed panes which will allow multiple method to be

simultaneously edited

• test RJCE on more platforms as it has only been tested so far on Windows

2000/XP

• implement multi-page printing

Bibliography 97

13. Bibliography

[0] Andrew S. Tanenbuam Structured Computer Organization, Fourth Edition, Prentice

Hall, p 34-36

[1] Andrew S. Tanenbuam Modern Operating Systems, Second Edition, Prentice Hall, p 6

[2] Kenneth C. Louden, Compiler Construction Principles and Practice, PWS

Publishing Company, 1997, p4-8

[N2] Laurence Vanhelsuwé, Mastering JavaBeans, SYBEX, 1997, p2, 3

[3] Phillip Farrel, Interpreted Languages, Stanford University,

http://pangea.stanford.edu/computerinfo/unix/programming/interpreted.shtml, 1992

[4] Jon Byous, Java Technology: An Early History,

http://www.comedition.com/Computers/Java/JavaHistory.htm

[5] Patrick Naughton, Java History, University of North Carolina,

http://www.ils.unc.edu/blaze/java/javahist.html

[6] William Wagers, Java Timeline (Java Milestones), Focus on Java,

http://java.about.com/cs/articles/a/javahistory.htm

[7] Java History, Physics Simulation and Java,

http://java.about.com/cs/articles/a/javahistory.htm

[8] Tim Lindholm & Frank Yellin, The JavaTM Virtual Machine Specification¸ 2nd Ed.,

Addison-Wesley, 1999

[10] Pat Niemeyer, Lightweight Scripting for Java, http://www.beanshell.org/

[11] Stéphane Hillion, DynamicJava homepage http://koala.ilog.fr/djava/

[12] NativeJ homepage http://www.dobysoft.com/products/nativej/

[13] Monica Pawian, Reference Objects and Garbage Collection, java.sun.com,

http://developer.java.sun.com/developer/technicalArticles/ALT/RefObj/

Bibliography 98

[14] Stuart Dabbs Halloway, Component Development for the Java Platform, Addison-

Wesley, 2002, p 17-83

[15] Stuart Dabbs Halloway, Component Development for the Java Platform, Addison-

Wesley, 2002, p 93

[16] Andrew S. Tanenbuam Modern Operating Systems, Second Edition, Prentice Hall,

p 710-715, 811-817

[17] J. Gosling, B. Joy, G. Steele & G. Bracha, The Java Language Specification, Sun

Microsystems, 2000,

[18] Ken McCrary, Create a custom Java 1.2-style ClassLoader, Java World,

http://www.javaworld.com/javaworld/jw-03-2000/jw-03-classload.html

[19] Chuck McManis The basics of Java class loaders, Java World,

http://www.javaworld.com/javaworld/jw-10-1996/jw-10-indepth.html

[20] Stuart Dabbs Halloway, Component Development for the Java Platform, Addison-

Wesley, 2002, p 17-83

[21] Monica Pawlan, Reference Objects and Garbage Collection, java.sun.com,

http://developer.java.sun.com/developer/technicalArticles/ALT/RefObj/

[22] Stuart Dabbs Halloway, Using Class Loader for Hot Deployment, Java Developer

Connection Tech Tips, October 31, 2000,

[23] Thomas Ball, Java Language Debugging,

http://java.sun.com/products/jdk/1.2/debugging/index.html

[24] JBuilder homepage http://www.borland.com/jbuilder/

[25] NetBeans homepage http://www.netbeans.org/

[26] J. J. Cook, Reverse Execution of Java Bytecode, The Computer Journal, Vol. 45,

No. 6, 2002

[27] David Kearns, Java scripting languages: Which is right for you?, Java World,

www.javaworld.com/javaworl/jw-04-2002/jw-0405-scripts.html

[28] Rick Hightower, BeanShell & DynamicJava: Java Scripting with Java, Java

Developers Journal, http://www.sys-con.com/java/article.cfm?id=881

Bibliography 99

[29] Java Look and Feel Design Guidelines: Advanced Topics, Sun Microsystems,

2001, http://java.sun.com/products/jlf/at/book/Titlepage.html

[30] Kenneth C. Louden, Compiler Construction Principles and Practice, PWS

Publishing Company, 1997, p45, 64, 69

[31] Andrew W. Appel, Modern Compiler Implementation in Java, Cambridge

University Press, 2002, p 21

[32] J. Gosling, B. Joy, G. Steele & G. Bracha, The Java Language Specification, Sun

Microsystems, 2000,

http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html

[33] Java Compiler Compiler[tm] (JavaCC[tm]) – The Java Parser Generator,

https://javacc.dev.java.net/

[34] Terence Parr, ANLTR Reference Manual, http://www.antlr.org/doc/

[35] JavaCC [tm]: Features, https://javacc.dev.java.net/doc/features.html

[36] Eric Armstrong Simple API for XML, The Java Web Services Tutorial

http://java.sun.com/webservices/docs/1.0/tutorial/doc/JAXPSAX.html

[37] E. Gamma, R. Helm, R. Johnson & J. Vlissides, Design Patterns – Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1997, p 87-97, 107 -117

[38] Tal Liron, Enhance your Java application with Java Native Interface (JNI), Java

World, http://www.javaworld.com/javaworld/jw-10-1999/jw-10-jni-p2.html

[39] Steve Wilson & Jeff Kesselman, Java Platform Performance – Strategies and

Tactics, Addison-Wesley, 2000, p 57-63

